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Figure 1. Description of our convolutional and deconvolutional
blocks. The convolutional (Conv) and deconvolutional layers (De-
conv) take parameters including the number of input channels, the

number of output channels, filter size, stride, and the size of zero
padding. We use 0.2 for the LeakyReLU (LReLU) coefficient.

This supplementary material provides additional implemen-
tation details of our compositional pose transfer network
(Sec. A.2), and more results (Sec. B). In the supplementary
video, we included the full results of the qualitative com-
parison, ablation study, more results, and the description of
our overall pipeline.

A. Additional Implementation Details

In this section, we provide the implementation details of
each modular function in our compositional pose transfer
network.

A.1. Network Design

Fig. 2 describes the SilNet architecture which takes as
input source triplet of the pose map, garment labels, and
silhouette, and target pose map, and predicts the silhouette
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Figure 2. The details of our SilNet implementation where C-
BLK and D-BLK are described in Fig. 1. Conv and Deconv take
as input parameters of (the number of input channels, the number
of output channels, filter size, stride, the size of zero padding). We
use 0.2 for the LeakyReLU (LReLU) coefficient.
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Figure 3. The L1 loss convergence of the modular training (ours)
and end-to-end training.

mask in the target pose. Fig. 4 describes the architecture
of our GarNet that takes as input source triplet of the pose
map, silhouette, and garment labels, and target triplet of
the pose map, predicted silhouette, and pseudo garment la-
bels, and predicts the complete garment labels. In Fig. 8,
we show the details of our RenderNet which takes as input
source triplet of image, silhouette mask, and garment la-
bels, target silhouette and garment labels, and target pseudo
image and its mask, and generates the person image.

For processing each frame in inference time, SilNet, Gar-
Net, and RenderNet take 5Sms, 7ms, and 22ms with 1.6GB,
1.6GB, and 2.2GB GPU footprint, respectively, totaling
34ms, or 30 Hz; the memory requirement is SGB.

A.2. Training Details

We train the proposed SilNet, GarNet, and RenderNet
separately in a fully supervised way using only 3D people
synthetic dataset [7]. For training, we set the parameters of
A1 = 0.5, A2 = 0.1, A3 = 0.01, A4 = 10 and use the Adam
optimizer [3] (Ir = 1 x 1073 and 8 = 0.5). After training,
no further fine-tuning on the testing scene is required.

Our networks are differentiable, and thus, end-to-end
trainable. However, since each task is heavily disjointed
(e.g., using different ground-truth labels), the end-to-end
training does not result in meaningful improvement. Fur-
ther, we empirically found that due to the dependency be-
tween networks, the loss convergence of the end-to-end
training is suboptimal as shown in Fig. 3. In fact, the mod-
ular training achieves lower error for each task. We will
include a convergence analysis in the revised version.

B. More Results
B.1. Additional Dataset Description

We provide more details of the videos used for the eval-
uation. In order to evaluate our approach, we use eight
sequences of the subjects in various clothing and motions
from existing works [9, 8, 4, 1, 2] and capture two more se-
quences which include a person with more complex cloth-
ing style and movement than others. RoM1 and RoM2: Two
men show their range of motion with various poses [8].
Jumping [9]: A woman in a black and white coat jump
from one side to another. Kicking and Onepiece [2]: A man
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Figure 4. The details of our GarNet implementation where C-
BLK and D-BLK are described in Fig. 1. Conv and Deconv take
as input parameters of (the number of input channels, the number
of output channels, filter size, stride, the size of zero padding). We
use 0.2 for the LeakyReLU (LReLU) coefficient.

and woman take the motion of kicking and dancing where
the woman is wearing a unique onepiece. Checker [4]: A
man in shirts with checkered pattern swings his hands. Ro-
tationl and Rotation2 [1]: Two A-posed men rotate their
body. Maskman: A man wearing a facial mask shows his
various motion. Rainbow: A woman in a sweater with rain-
bow pattern turns her body with dancing motion.

B.2. User Study Results

In our user study, three questions are asked: Q1: Which
video looks most realistic including temporal coherence?
Q2: Which video preserves the identity best including fa-



cial details, shape, and overall appearance? Q3: In which
video, the background is preserved better across the frames
(only for the case of scenes with background)? For each
method, we measure the performance based on the number
of entire votes divided by the number of participants and
the number of occurrence in the questionnaires. The full re-
sults are shown in Fig. 5. The first question was answered in
84.3% and 93.0% of the cases in favour of our method with
and without the ground truth sequence, respectively, and the
second question 84.1% and 94.2%. In the third question, the
background is preserved better in our method than LWG in
96.8 % of the answers. The results show that our method
outperforms other state of the art, and our animations are
in many cases qualitatively comparable to real videos of the
subjects. The choice between a real video and our anima-
tion did not fall easy because the ground-truth video often
contains noisy boundary originated from the person seg-
mentation error while the generated person images from our
method shows the clear boundary.

B.3. Additional Quantitative Results

We include the quantitative results which do not appear
in the main paper. In Table 1, the performance of the base-
line models that are pretrained from the DeepFashion (DF)
dataset by the authors is summarized in the first chunk (from
2 to 6 row), ablation study in the second chunk (from 7 to
16), and application to the multiview data in the third chunk
(from 17 to 18).
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person segmentation error while our method produces the human
animation with clean boundary.
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Maskman Rainbow RoM1 RoM2 Jumping Kicking Onepiece Checker Rotationl Rotation2 Average
PG (DF) 2.01/424 | 2.14/4.41 222/448 | 1.81/431 | 2.33/432 | 2.15/4.49 2.43 4.66 2.07/4.25 1.74/4.18 | 2.58/4.47 | 2.15/4.38
SGAN (DF) 2.33/396 | 239/422 | 250/4.16 | 2.12/422 | 2.63/4.09 | 2.49/429 | 2.67/425 | 2.34/3.99 | 1.89/3.93 | 2.74/4.22 | 2.43/4.13
PPA (DF) 2.84/3.776 | 2.70/3.80 | 2.78/391 | 2.65/3.97 | 2.89/3.87 | 2.88/3.94 | 3.21/4.05 | 226/3.76 | 226/3.75 | 3.01/3.77 | 2.74/3.86
GFLA (DF) 1.96/386 | 1.64/393 | 2.19/3.89 | 1.50/3.99 | 2.01/3.85 | 2.05/3.96 | 2.23/3.94 | 1.74/3.84 | 1.60/3.88 1.92/3.89 | 1.88/3.90
NHHR (DF) 1.71/2.96 1.89/3.06 1.82/3.07 1.56/3.03 | 2.06/3.03 1.68/3.11 2.16/3.16 | 1.48/2.94 1.80/3.02 | 2.77/3.11 1.89/3.05
R 1.64 /231 1.48/2.43 1.41/230 | 1.53/2.44 | 2.00/2.54 | 1.16/2.18 1.36/2.34 | 1.41/231 1.22/231 1.62/2.33 1.48/2.35
GR 1.64/2.30 1.45/2.42 1.51/2.30 1.44/2.42 1.91/2.53 1.40/2.24 | 1.24/2.35 1.39/229 | 1.21/2.30 1.60/2.32 1.47/2.35
SR 1577226 | 1.30/2.42 | 131/2.24 | 1.41/237 | 1.89/2.54 | 1.17/2.20 | 124/233 | 1.11/2.24 | 1.05/2.23 | 1.25/2.22 | 1.33/2.31
SGR-S*® 1.58/229 | 1.33/241 1.26/226 | 1.43/239 | 1.99/254 | 1.18/223 | 1.29/235 | 1.10/2.36 | 1.05/2.23 1.24/220 | 1.35/2.32
SGR-G* 1.66/2.30 | 1.38/2.39 1.31/2.32 1.48/2.35 1.89/2.51 1.18/2.23 1.31/2.40 | 1.31/2.31 1.19/2.28 1.42/2.30 1.41/2.34
SGR-I* 1797228 | 1.97/249 | 155/230 | 1.52/2.38 | 2.13/2.50 | 1.31/2.23 | 1.79/2.39 | 1.49/2.31 1.15/2.22 | 1.50/2.21 1.62/2.33
SGR-z*° 1.57/2.27 1.31/240 | 1.25/2.26 | 142/238 | 1.90/252 | 1.15/2.19 | 1.29/2.31 1.11/2.22 | 1.05/2.19 | 1.24/2.23 1.32/2.30
SGR-Lkr, 1.54 /227 1.25/2.38 1.27/2.25 1.40/2.38 1.88/2.55 1.13/2.19 1.25/2.32 1.09/224 | 1.04/220 | 1.15/2.19 1.30/2.30
SGR-A 1.59/2.28 | 1.28/2.40 | 1.31/2.26 | 1.40/2.38 | 1.86/2.51 1.23/2.21 1.32/2.33 | 1.14/2.25 | 1.15/2.23 | 1.28/2.20 | 1.36/2.31
SGR (full) 1.54/2.27 | 1.24/2.38 | 1.25/2.24 | 1.38/2.36 | 1.87/2.53 | 1.08/2.19 | 1.23/2.32 | 1.09/2.24 | 1.00/2.19 | 1.12/2.16 | 1.28/2.29
SGR+2view 1.50/2.25 1.22/2.38 1.21/2.23 1.33/2.36 | 1.80/2.51 1.15/2.17 | 1.20/2.31 1.07/2.23 | 097/2.16 | 1.06/2.14 | 1.25/2.28
SGR-+4view 1.49/2.25 1.21/2.38 1.21/2.23 1.33/2.35 1.80/2.51 1.12/2.17 | 1.20/2.31 1.07/2.23 | 098/2.16 | 1.07/2.14 | 1.24/2.27

Table 1. Quantitative results with LPIPS (left, scale: 10™!) and CS where the lower is the better. We denote the full model used for the
comparison with other baseline methods as SGR (full).
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[SPADE Residual Block]
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Figure 6. The description of SPADE and SPADE Residual
blocks similar to [6]. Conv take as input parameters of (the num-
ber of input channels, the number of output channels, filter size,
stride, the size of zero padding). We use 0.2 for the LeakyReLU

(LReLU) coefficient.

[Multi-SPADE Residual Block with Deconvolution]
define MS-ResBLK-D (ic, cc, oc)

ic: input feature channel

cc: conditioning feature channel

oc: output feature channel
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Figure 7. The description of Multi-Spade blocks similar to [5]
where the details of S-ResBLK is described in Fig. 6. Conv and
Deconv take as input parameters of (the number of input channels,
the number of output channels, filter size, stride, the size of zero
padding). We use 0.2 for the LeakyReLU (LReLU) coefficient.
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Figure 8. The details of our RenderNet where C-BLK and D-
BLK are described in Fig 1, and MS-ResBLK-D is in Fig. 7.
Conv takes as input parameters of (the number of input channels,
the number of output channels, filter size, stride, the size of zero
padding). We use 0.2 for the LeakyReLU (LReLU) coefficient.



