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Supplementary Material

1. Implementation details
We report additional implementation details for each

method.

1.1. Settings for landmark regularization

For the training, we randomly split the training set into
two equally sized partitions, one to evaluate the super-net
loss and another to evaluate the landmark regularization.
Following [6], we disable the tracking of running statistics
in the batch normalization layers. We sample m = 1 pairs
for each super-net training step after the warm-up phase.
For the CIFAR-10 experiments, we warm-up the super-net
for 250 epochs before applying our landmark regulariza-
tion.

ImageNet experiments. We use PyTorch’s automatic
mixed-precision mode to accelerate the training. All search
experiments have a batch size of 256, while re-training hav-
ing a size 1024 following [5]. For stand-alone training,
we increase the learning rate from 0.1 to 0.25 in the first
5 epochs, then decrease to 1e− 4 in a linear fashion for 245
epochs.

1.2. Hyper-parameter Settings for three NAS algo-
rithms

SPOS. After the super-net is trained, we randomly sample a
population size of 50 architectures to begin the evolutionary
search. We implement a budget of 1000 architectures to
query the super-net accuracy. For the DARTS space, we
retrain the top-1 architecture to evaluate the performance
and repeat in total three times to ensure the robustness of
our conclusions.

NAO. For both the encoder and the decoder, we set to-
ken embedding size to 48 for NASBench-101, to 12 for
NASBench-201, and to 48 for the DARTS search space. We
set the LSTM hidden layer size to 64 for all experiments.
Each LSTM encoder has two layers. We train the controller
for 1000 epochs at epochs 320, 360, and 400 in our CIFAR-
10 experiments, and at epochs 140, 180, and 200 for our
ImageNet experiments. Other hyper-parameters remain the

same as in [4].

GDAS. We follow Dong and Yang [1]: We initialize the
Gumbel-Softmax temperature τ to 10 and linearly decrease
τ to 0.1 during training. We train the super-net in a SPOS
fashion up to 400 epochs for CIFAR-10 experiments and
up to 140 epochs for ImageNet experiments. We then train
the architecture parameters for another 35 epochs. The ini-
tial learning rate is set to 0.1 for NASBench-201 and the
DARTS search space on CIFAR-10 experiments, and 0.1 for
ImageNet experiments. The learning rate follows a cosine
annealing with a minimal value of 1e− 5. The batch size is
set to 256 on NASBench-201 and 128 on DARTS. We set
all other hyper-parameters, e.g. weight decay, learning rate
scheduler, as proposed in [1].

1.3. Details of each search space

Introduce some special things for each search space.
such as the number of architecture, etc. NASBench-101.
This space restricts to search for the topology and opera-
tions to formulate a cell. Each cell is a fully connected di-
rect acyclic graph, where the first node is the input and the
last node represents the output node. In total, the number of
nodes is set to 7. Each possible node has three operations,
convolutional operation with kernel size 1 and 3, and max-
pooling layer with kernel 3. It further limits the search space
by pruning architectures with more than 9 active edges. We
follow the adaptation in Yu et al. [7] to make NASBench-
101 applicable to weight sharing NAS approaches. Regard-
ing hyper-parameters, we set the channel number of the first
cell to 64 and batch-size to 128.

NASBench-201. To address some limitations in
NASBench-101 and better simulate the general NASNet
like search space, Dong et al. [2] proposes NASBench-201.
Similar to NASBench-101, it is a cell-based search space,
whose cell encompasses four nodes including one input and
one output one. Each edge of the graph consists of five op-
erations: 1) zero, 2) skip-connection, 3) convolution with
kernel size 1, 4) kernel size 3, and 5) average pooling with
kernel size 3. For hyper-parameters, we set the batch size
as 256 and the channel number at the first cell as 16.
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Figure 1: Different encodings of the continuous super-net. (a) Traditional continuous encoding used in DARTS-based method. The
architecture is encoded in architecture parameters that sum to one. (b) We propose to select one architecture during continuous training by
adding a fixed amount perturbation D to the selected branch, and subtracting a perturbation of D/(n − 1) from the other branches. (c)
Naive approach to select one architecture by one-hot encoding. Note that, we refer (b) as soft one-hot encoding because it is in between of
(a) and (c).
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Figure 2: (Left) Validation accuracy during super-net training for
one-hot encoding and our proposed soft one-hot with different D.
We can observe that the naive one-hot encoding always yields ac-
curacies around 0.1 on the validation set, whereas our proposed
soft one-hot ranges from 50% to 60%. (Right) We further com-
pare S-KdT. We choose D = 0.01 for further experiments with
our landmark regularization.

DARTS search space. This is one of the most important
NAS search spaces in the current literature [3, 5]. It origi-
nates from the micro search space in Zoph et al. [8]. It con-
tains a DAG with 7 nodes, where two serving as previous
input, one serving as an output node. The edge between the
two input nodes is dropped. For each edge between the in-
termediate node to the input one consists of 8 operations to
search, separable, and dilated convolutions with kernel size
3 and 5, max and average pooling with kernel size 3, iden-
tity, and zero. We search two types of cells, namely normal
cell and reduced cell, which reduces the feature map dimen-
sion by a factor of 2. For CIFAR-10 experiments, we set the
batch size to 64, the channel number of the first cell to 36,
a total network depth of 12 searchable cells. For ImageNet
experiments, we follow set batch-size to 256, the channel
number of the first cell to 16, and a depth of 8 cells.

2. Additional result

We report additional results to further show the effective-
ness of our method. We also show the discovered architec-

Table 1: Additional results on NASBench-201. “Best” indicates
the accuracy (with rank) of the best architecture out of three runs.

CIFAR-100 ImageNet16-120

Model S-KdT Mean Acc. Best S-KdT Mean Acc. Best

SPOS 0.506 66.81±0.32 69.51(1476) 0.637 40.28±3.61 44.68(418)
+Ours 0.558 67.49±0.28 70.92(238) 0.673 42.53±1.47 45.10(246)

GDAS 0.572 66.03±1.03 68.59(2836) 0.624 42.13±0.75 43.35(1235)
+Ours 0.677 67.74±0.63 69.67(1236) 0.709 43.50±0.61 44.83(351)

NAO 0.492 67.39±0.52 70.02(843) 0.615 40.44±1.35 41.86(2450)
+Ours 0.585 69.38±0.43 71.48(103) 0.631 43.02±1.01 44.27(613)

tures for the image classification tasks.

2.1. Additional Datasets of NASBench-201

We report comparisons on CIFAR-100 and ImageNet16-
120 in Table 1. Note that all standard deviations of S-KdT
are smaller than 0.03. Our approach also provides a consis-
tent improvement on these datasets.

2.2. Case study: Application on PC-DARTS

We show how to apply our method to DARTS-based
methods with a continuous sampling of the super-net. We
pick the state-of-the-arts method PC-DARTS [5] to exper-
imentally validate our approach. We conduct our experi-
ments on NASBench-201 search space.
Naive one-hot encoding in continuous space. We intro-
duce a novel soft one-hot encoding to apply our landmark
regularization in a continuous super-net. A fundamental dif-
ference between discrete super-net with a continuous one is
how to select a single architecture from the continuous ar-
chitecture specification (also known as rounding), which is
a requirement to be able to evaluate our regularization term.
As shown in Figure 1(c), a single architecture in a discrete
space can be picked directly from its associated weights. In
continuous space, however, there is no real architecture se-
lection because the architecture parameters are part of the
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Figure 3: Visualization of different loss formulation f(L1 − L2) and its first-order gradient. Note that the loss shape of ReLU and
ReLU-Normalize are the same, because we normalize Li but not its associated function.

Loss Name ReLU Softplus ReLU-Norm Sign Tanh

S-KdT 0.802 0.613 0.741 0.709 0.756
Mean Acc. 92.08 92.00 91.91 91.02 91.48

Table 2: Validating different loss function on NASBench-201

super-net as shown in Figure 1(a). To the best of our knowl-
edge, there is no existing method that can effectively sample
one architecture from a continuous search space to conduct
ranking analysis.

Soft one-hot encoding. To this end, we propose a sim-
ple but effective encoding to sample one architecture from
a continuous super-net, dubbed as soft one-hot encoding.
The idea is to relax the traditional one-hot encoding to sim-
ulate the continuous one. As shown in Figure 1(b), we
start with a uniform distribution and add a perturbation D
to the selected branch, while substracting a perturbation by
D/(n − 1) from the other branches such that the sum of
weights remains equal to one. In Figure 2 (left), we can
see this drastically increases validation accuracy from 10%
to around 50%. In addition, we ablate different values of
D ∈ {0.01, 0.05, 0.1} in Figure 2 (right). SettingD = 0.01
reaches the highest S-KdT.

Applying landmark regularization with the soft one-hot
encoding. We further deploy this method with our land-
mark regularization. We keep all configuration the same
as in our previous NASBench-201 GDAS experiment. Our
regularization improves the S-KdTfrom 0.12 to 0.269, and
improves the best model from rank 906 to 245. This evi-
dences that our method can generalize to continuous differ-
entiable architecture search method.

2.3. Loss formulation

We validate other possible formulations of the rank-
ing regularization. Specifically, to penalize the archi-
tectures that disobey the ideal ranking order, we evalu-
ate various instances of loss functions f that obey R =
f(L(x, θsai

),L(x, θsaj
)) > 0 when i < j but L(x, θsai

) >
L(x, θsaj

). We shorten L(x, θsai
) to Li during this discus-

sion, and rewrite the formulation as R = f(Li − Lj). We
evaluate the following functions (c.f . Figure 3):

• ReLU: f(x) = max(0, x)

• Softplus: f(x) = ln 1 + ekx/k, where k = 3

• ReLU-normalized: f(x) = max(0, x), however, we
normalize Li s.t. Li ∈ [0, 1].

• Sign: f(x) = max(0, sign(x))

• Tanh: f(x) = max(0, tanh(x))

Table 2 reports the results of the different loss functions
on NASBench-201. The best performance is achieved by
the ReLU formalism, which corresponds to the formulation
shown in the main paper.

2.4. Searched model

For DARTS search space, we report the configuration
of the searched models on CIFAR-10 in Figure 4 and on
ImageNet in Figure 5.
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Figure 4: Best architectures discovered by our algorithms on CIFAR-10.
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Figure 5: Best architectures discovered by our algorithms on ImageNet.
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