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1. Introduction and motivation

In the main paper, we analyze the potential problems
of traditional model compression and knowledge distilla-
tion methods. Inspired by the principle of minimally inva-
sive surgery, we propose a brand-new model compression
method named Minimally Invasive Surgery. MIS learns
the principal features from a pair of dense and compressed
models in a contrastive manner. We prove that MIS changes
the learning effectiveness ratio and the probability distribu-
tion between easy and hard learning objects from informa-
tion entropy and Bayes perspectives. With the comparison
and ablation experiments, we show the success of MIS re-
lies on learning the inherent discrepancy between the repre-
sentation capacities of the dense and the compressed mod-
el, and the discrepancy introduced by hardware acceleration
restrictions between two compressed models. With MIS,
we can compress the models for various tasks into efficien-
t forms and can get considerable acceleration in general-
purpose GPUs.

The motivation of MIS method combines two main
points in the contribution list.

• MIS is designed to have better performance than tra-
ditional knowledge distillation and the other network
compression methods.

• MIS needs to provide the end-to-end compression for
neural networks to meet the specific hardware acceler-
ation requirements.

When making the investigation of the network compres-
sion methods aiming at model sparsity, we can divide them
into two categories, i.e., coarse-grained sparsity and fine-
grained sparsity. For the coarse-grained sparsity like filter-
sparsity and channel-sparsity, the regular sparse pattern is
easy to achieve acceleration on general-purpose processors
because it is equivalent to a smaller dense model. For the
fine-grained sparsity, the acceleration on general-purpose
hardware is very limited due to the irregular sparse pat-
tern caused by the compression methods. Because there are
many papers focus on the coarse-grained sparsity (e.g., fil-

ter pruning researches), so the main focus of the proposed
MIS method is on the fine-grained sparse model.

Figure 1. A100 fine-grained structured sparsity feature.

A100 GPU [19] has the new feature to support the fine-
grained structured sparsity by enforcing through a 2:4 s-
parse matrix definition that allows two non-zero values in
every four-entry vector, as shown in Figure 1. Due to the
well-defined structure of the matrix, it can be compressed
efficiently and reduce memory storage and bandwidth by
almost 2X. The sparse Tensor Cores can exploit 2:4 struc-
tured sparsity to double the compute throughput of standard
Tensor Core operations for neural networks. So if we can
make tiny changes on the irregular fine-grained sparse pat-
tern like minimally invasive surgery, and match the 2:4 fine-
grained sparse requirements. Then we can fully utilize this
feature to provide extra acceleration to the fine-grained s-
parse model.

In this Appendix, we will provide some supplementary
materials and more experimental results for the proposed
MIS algorithm.

2. Experimental results
In the experiments section of the main paper, we have

investigated these issues:

• MIS effectiveness and performance across most of the
comment networks and applications.



• Quantitative comparison with state-of-the-art methods.
• Ablation experiments.
• Acceleration on general-purpose hardware.

In the Appendix, we will provide more results with dif-
ferent parameters settings. For the experiments in this sec-
tion, we choose PyTorch [21] to implement all algorithm-
s. Most of the training and fine-tuning experimental re-
sults are obtained with V100 GPU clusters [18]. The ac-
celeration performance results are obtained with A100 G-
PU clusters [19] to fully utilize its Tensor Core [20] sup-
port for fine-grained structured sparsity and irregularly-
compressed models. Because V100 and A100 GPUs could
provide much larger math throughput of FP16 than FP32
data type, we also combine MIS with the mixed-precision
training [17] provided by APEX1 to compress the models
into a more hardware-efficient format. So all the accuracy
results reported by MIS are using FP16 as the default da-
ta type. All the reference algorithms use the default data
type provided in public repositories. (Almost all use FP32
except where noted.)

2.1. Effectiveness experiments for classification task

To evaluate the effectiveness of the MIS method on
the image classification task, we take the ResNet-50 [8],
ResNeXt-101 [28] and MobileNet-V2 [23] from TorchVi-
sion2 are chosen as the experiment target models.

In the main paper, the loss adjustment parameters among
the surgical prediction loss (α), the healthy-surgical distilla-
tion loss (β) and the recovered-surgical distillation loss (γ)
apply 1, 10, 50, respectively. More results with different
adjustment parameters can refer to Table 1. (The variance
is within ±0.17 for Top-1 accuracy, and ±0.15 for Top-5
accuracy with different random seeds.)

The original sparse models serve as MR are trained with
the public Distiller library3 [33]. *-PRE represents the
pre-trained model, *-FINE represents the fine-grained s-
parse model obtained by adopting a gradual pruning tech-
nique (AGP) to sparsify the model during the training pro-
cess4 [31], *-BLK represents the block-grained [32] sparse
model, *-SUR represents the fine-grained [6] sparse mod-
el by applying pruning and splicing in a dynamical man-
ner, *-SNIP represents the single-shot pruned [13] model
by analyzing the connection sensitivity. In this experiment,
MIS does not use the ground truth label provided by Ima-
geNet [4] dataset. It takes the predicted label from MH to
calculate the surgical prediction loss.

1https://github.com/NVIDIA/apex.
2https://github.com/pytorch/vision.
3https://github.com/NervanaSystems/distiller.
4Notice some of the sparse ResNet-50 models and all of the sparse

ResNeXt-101 models have higher accuracy than the pre-trained dense
models provided by TorchVision.

Models
Original
Sparsity

Recovered Model Accuracy Finetuned
Sparsity

Surgical Model Accuracy Surgical vs.
Healthy

Surgical vs.
Recovered

Surgical vs.
Fake LabelTop-1 (%) Top-5 (%) Top-1 (%) Top-5 (%)

ResNet50-RPE 0% 76.130 92.862 N/A N/A N/A N/A N/A N/A

ResNet-50-FINE 70% 76.496 93.080 70%
75.910 92.650 10 50 1
75.892 92.681 10 25 1
75.854 92.704 10 10 1

ResNet-50-FINE 85% 75.670 92.682 85%
75.198 92.280 10 50 1
75.175 92.301 10 25 1
75.134 92.334 10 10 1

ResNet-50-FINE 90% 74.680 92.298 90%
74.156 91.874 10 50 1
74.125 91.810 10 25 1
74.078 91.764 10 10 1

ResNet-50-FINE 95% 71.830 90.646 95%
71.414 90.288 10 50 1
71.455 90.293 10 25 1
71.518 90.292 10 10 1

ResNet-50-BLK 70% 76.452 92.990 70%
76.224 92.852 10 50 1
76.231 92.841 10 25 1
76.240 92.838 10 10 1

ResNet-50-SUR 80% 75.538 92.670 80%
75.162 92.390 10 50 1
75.160 92.384 10 25 1
75.156 92.374 10 10 1

ResNeXt101-RPE 0% 78.188 93.886 N/A N/A N/A N/A N/A N/A

ResNeXt-101-FINE 75% 79.078 94.468 75%
79.254 94.544 10 50 1
79.297 94.505 10 25 1
79.322 94.488 10 10 1

ResNeXt-101-FINE 85% 78.764 94.368 85%
78.880 94.398 10 50 1
79.952 94.374 10 25 1
79.002 94.354 10 10 1

ResNeXt-101-FINE 90% 78.530 94.110 90%
78.584 94.154 10 50 1
78.624 94.135 10 25 1
78.648 94.120 10 10 1

ResNeXt-101-FINE 95% 76.922 93.574 95%
77.058 93.596 10 50 1
76.995 93.591 10 25 1
76.928 93.584 10 10 1

ResNeXt-101-BLK 75% 79.063 94.404 75%
79.173 94.471 10 50 1
79.220 94.462 10 25 1
79.269 94.453 10 10 1

ResNeXt-101-SUR 80% 78.631 94.356 80%
78.845 94.502 10 50 1
78.891 94.497 10 25 1
78.939 94.488 10 10 1

MobileNet-V2-RPE 0% 71.880 90.290 N/A N/A N/A N/A N/A N/A

MobileNet-V2-FINE 50% 69.023 88.765 50%
70.804 88.918 10 50 1
70.236 88.874 10 25 1
70.006 88.804 10 10 1

MobileNet-V2-FINE 75% 68.371 88.303 75%
68.500 88.412 10 50 1
68.472 88.398 10 25 1
68.442 88.400 10 10 1

MobileNet-V2-FINE 85% 65.303 86.519 85%
65.422 86.676 10 50 1
65.406 86.638 10 25 1
65.380 86.544 10 10 1

Table 1. MIS effectiveness on image classification task.

2.2. Effectiveness experiments for detection task

To evaluate the effectiveness of the MIS on the detection
task, we take the Faster R-CNN [22], RetinaNet [14], Mask
R-CNN [7] from Detectron5, and SSD [16] from NVIDIA
repository6 as the experiment target models. In the main
paper, the loss adjustment parameters among the surgical
prediction loss (α), the healthy-surgical distillation loss (β)
and the recovered-surgical distillation loss (γ) apply 1, 10,
15, respectively. More results with different adjustment pa-
rameters can refer to Table 2. (The variance is within ±0.20
for average precision, and ±0.24 for average recall with d-
ifferent random seeds.)

The original sparse models serve as MR are compressed
with AGP method and trained with the Distiller library3.
R50, R101 and X101 in the brackets represent the ResNet-
50, ResNet-101 and ResNeXt-101 models served as the
backbone of the detection networks. 1x and 3x represen-
t the different learning rate schedulers which are applied
when training the backbone models. AP and AR represent
the average precision and average recall metrics. In this ex-
periment, MIS uses the ground truth info provided by CO-
CO [15] dataset.

5https://github.com/facebookresearch/detectron2.
6https://github.com/NVIDIA/DeepLearningExamples.



Model Healthy Model Sparsity
Ratio

Recovered Model Surgical Model Surgical vs.
Healthy

Surgical vs.
Recovered

Surgical vs.
Fake LabelBox AP Box AR Box AP Box AR Box AP Box AR

Faster R-CNN(R50-1x) 37.65 52.14

50% 38.58 53.04
38.82 53.07 10 25 1
38.76 53.05 10 15 1
38.65 52.97 10 5 1

75% 36.67 51.31
36.66 51.47 10 25 1
36.57 51.42 10 15 1
36.51 51.39 10 5 1

Faster R-CNN(R50-3x) 39.79 52.14

50% 39.96 53.97
39.93 53.95 10 25 1
39.89 53.92 10 15 1
39.81 53.90 10 5 1

75% 38.85 52.92
38.99 53.26 10 25 1
38.94 53.21 10 15 1
38.88 53.14 10 5 1

Faster R-CNN(R101-3x) 41.92 55.55

50% 42.03 55.53
42.11 55.77 10 25 1
42.01 55.65 10 15 1
41.93 55.58 10 5 1

75% 41.12 55.11
41.15 55.29 10 25 1
41.11 55.23 10 15 1
41.03 55.17 10 5 1

Faster R-CNN(X101-3x) 43.08 55.63

50% 42.59 55.74
42.79 55.88 10 25 1
42.68 55.83 10 15 1
42.57 55.81 10 5 1

75% 42.52 55.63
42.70 55.82 10 25 1
42.63 55.74 10 15 1
42.58 55.67 10 5 1

RetinaNet(R50-1x) 36.45 53.36

50% 37.43 53.82
37.49 54.23 10 25 1
37.42 54.11 10 15 1
37.28 54.03 10 5 1

75% 34.85 51.84
34.90 51.98 10 25 1
34.81 51.93 10 15 1
34.76 51.85 10 5 1

RetinaNet(R50-3x) 38.45 54.34

50% 37.44 53.71
37.71 53.94 10 25 1
37.55 53.81 10 15 1
37.39 53.66 10 5 1

75% 37.40 53.33
37.57 53.42 10 25 1
37.43 53.28 10 15 1
37.29 53.19 10 5 1

RetinaNet(R101-3x) 40.04 55.61

50% 39.33 55.22
39.34 55.21 10 25 1
39.27 55.07 10 15 1
39.21 54.95 10 5 1

75% 39.22 54.32
39.18 54.47 10 25 1
39.06 54.33 10 15 1
38.97 54.19 10 5 1

SSD(R50) 25.11 36.13

50% 25.83 36.91
25.84 36.97 10 25 1
25.72 36.80 10 15 1
25.60 36.61 10 5 1

75% 24.90 35.88
24.95 36.05 10 25 1
24.86 35.93 10 15 1
24.72 35.71 10 5 1

Mask R-CNN(R50-1x) 39.91 54.42

50% 39.79 53.92
40.37 54.75 10 25 1
40.21 54.62 10 15 1
40.10 54.48 10 5 1

75% 37.27 52.01
37.41 52.22 10 25 1
37.41 52.13 10 15 1
37.41 52.01 10 5 1

Mask R-CNN(R50-3x) 40.62 54.53

50% 40.70 54.63
40.97 54.71 10 25 1
40.84 54.50 10 15 1
40.68 54.34 10 5 1

75% 39.90 54.24
39.85 54.43 10 25 1
39.75 54.22 10 15 1
39.62 54.10 10 5 1

Mask R-CNN(R101-3x) 42.92 56.51

50% 43.21 56.83
43.14 56.68 10 25 1
43.01 56.55 10 15 1
42.87 56.32 10 5 1

75% 42.04 56.01
42.24 56.21 10 25 1
42.16 56.03 10 15 1
42.07 55.98 10 5 1

Mask R-CNN(X101-3x) 44.13 56.92

50% 43.95 55.81
43.96 55.84 10 25 1
43.89 55.74 10 15 1
43.77 55.68 10 5 1

75% 43.62 56.32
43.91 56.43 10 25 1
43.80 56.29 10 15 1
43.68 56.14 10 5 1

Table 2. MIS effectiveness on detection task.

2.3. Effectiveness experiments for translation task

To evaluate the effectiveness of the MIS on the transla-
tion task, we take the GNMT [27] from NVIDIA reposito-
ry6 and Transformer [25] from Fairseq7 as the experiment
target models. In the main paper, the loss adjustment param-
eters among the surgical prediction loss (α), the healthy-
surgical distillation loss (β) and the recovered-surgical dis-
tillation loss (γ) apply 1, 2, 5, respectively. More results
with different adjustment parameters can refer to Table 3.
(The variance is within ±0.15 for BLEU score with differ-
ent random seeds.)

The original sparse models serve as MR are compressed
with the pruning method [3]. WMT14 En-Ge and WMT16
En-Ge in the brackets represent the WMT14 and WMT16

7https://github.com/pytorch/fairseq.

Model Healthy Model Sparsity
Ratio

Recovered Model Surgical Model Surgical vs.
Healthy

Surgical vs.
Recovered

Surgical vs.
Fake LabelBLEU Score BLEU Score BLEU Score

GNMT(WMT16 En-Ge) 24.37

50% 24.77
24.75 2 10 1
24.73 2 5 1
24.72 2 3 1

75% 24.67
24.72 2 10 1
24.69 2 5 1
24.66 2 3 1

90% 24.30
24.34 2 10 1
24.31 2 5 1
24.29 2 3 1

Transformer(WMT14 En-Ge) 28.65

50% 28.89
28.94 2 10 1
28.91 2 5 1
28.87 2 3 1

75% 28.79
28.80 2 10 1
28.77 2 5 1
28.75 2 3 1

90% 28.15
28.25 2 10 1
28.21 2 5 1
28.18 2 3 1

Transformer(WMT16 En-Ge) 27.79

50% 28.01
28.06 2 10 1
28.03 2 5 1
28.00 2 3 1

75% 27.99
28.01 2 10 1
27.97 2 5 1
27.95 2 3 1

90% 27.65
27.74 2 10 1
27.70 2 5 1
27.66 2 3 1

Table 3. MIS effectiveness on translation task.

English-German dataset8, respectively. In this experiment,
MIS uses the ground truth info provided by WMT datasets.

2.4. Effectiveness experiments for super resolution

To evaluate the effectiveness of the MIS on the super res-
olution task, we take the SRResNet9 [12] as the experiment
target model. In the main paper, the loss adjustment param-
eters among the surgical prediction loss (α), the healthy-
surgical distillation loss (β) and the recovered-surgical dis-
tillation loss (γ) apply 1, 1.5, 3, respectively. More re-
sults with different adjustment parameters can refer to Ta-
ble 4. (The variance is within ±0.13 for PSNR, and ±0.045
for SSIM with different random seeds.) The representative
super-resolution outputs are shown in Figure 2.

Dataset Healthy Model Sparsity
Ratio

Recovered Model Surgical Model Surgical vs.
Healthy

Surgical vs.
Recovered

Surgical vs.
Fake LabelPSNR SSIM PSNR SSIM PSNR SSIM

Set5 31.803 0.863

50% 31.234 0.870
31.496 0.873 1.5 5 1
31.484 0.872 1.5 3 1
31.476 0.870 1.5 2 1

75% 31.145 0.862
31.421 0.863 1.5 5 1
31.301 0.861 1.5 3 1
31.159 0.860 1.5 2 1

90% 30.989 0.854
31.071 0.860 1.5 5 1
31.004 0.856 1.5 3 1
30.993 0.852 1.5 2 1

Set14 28.643 0.726

50% 28.315 0.755
28.423 0.757 1.5 5 1
28.417 0.754 1.5 3 1
28.411 0.750 1.5 2 1

75% 28.275 0.750
28.381 0.756 1.5 5 1
28.369 0.753 1.5 3 1
28.354 0.751 1.5 2 1

90% 28.012 0.743
28.146 0.749 1.5 5 1
28.134 0.747 1.5 3 1
28.127 0.745 1.5 2 1

DIV2K 29.256 0.788

50% 28.926 0.811
29.134 0.812 1.5 5 1
29.025 0.810 1.5 3 1
29.003 0.807 1.5 2 1

75% 28.795 0.793
28.932 0.803 1.5 5 1
28.918 0.798 1.5 3 1
28.901 0.794 1.5 2 1

90% 28.423 0.735
28.515 0.746 1.5 5 1
28.506 0.740 1.5 3 1
28.495 0.736 1.5 2 1

Table 4. MIS effectiveness on super resolution task.

The original sparse models serve as MR are compressed
with the pruning method [9]. SRResNet is trained on the

8http://www.statmt.org/wmt16/translation-task.html.
9https://github.com/twtygqyy/pytorch-SRResNet.
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Figure 2. Representative super resolution results with enlargements of boxed areas (The Recovered Model and Surgical Model are com-
pressed to 50% sparse level).



DIV2K dataset [1]. The DIV2K validation images, as well
as Set5 [2] and Set14 [29] datasets are used to report de-
ployment quality. In the super resolution task, image qual-
ity is often evaluated by two metrics: Peak Signal-to-Noise
Ratio (PSNR) [10] and Structural Similarity (SSIM) [26].

2.5. Ablation experiments and insights

2.5.1 More accurate healthy model

We change the healthy model with a more accurate one to
verify whether it can further improve the effect of MIS. We
use the pre-trained ResNeXt-101 from TorchVision2 as the
healthy model. The results are shown in Table 5.

Model
Sparsity

Ratio
Recovered Model Accuracy Surgical Model Accuracy

Top-1 (%) Top-5 (%) Top-1 (%) Top-5 (%)

ResNet-50 0% 76.130 92.862 N/A N/A
ResNeXt-101 0% 78.188 93.886 N/A N/A

ResNet50

70%-FINE 76.496 93.080 77.038 93.240
85%-FINE 75.670 92.682 75.836 92.704
90%-FINE 74.680 92.298 74.796 92.208
95%-FINE 71.830 90.646 71.964 90.638
70%-BLK 76.452 92.990 77.112 93.304
80%-SUR 75.538 92.670 75.820 92.738

Table 5. MIS with more accurate healthy model.

From the results, we can conclude a more accurate
healthy model can bring extra benefit in accuracy. It also
proves that MIS can be used when dense and compressed
models have different structures. This is not realizable for
the model compression methods which rely on distillation
from pure feature maps, like LIT [11].

2.5.2 Contribution of each component

In this experiment, we want to check the contribution
of each component in MIS to the final model compres-
sion effect. Then we can have a deep insight into why
MIS can outperform state-of-the-art methods. Apart from
AGP and KD methods we have discussed, we also in-
volve the Residual Knowledge Distillation [5] (RKD) and
Contrastive Representation Distillation [24] (CRD) meth-
ods in the comparison. The results with different sparsity
ratio are shown in Table 6. Unsupervised and Supervised
in the brackets represent MIS does not use & use the ground
truth info provided by ImageNet, respectively.

MIS introduces two distillation loss items to learn the in-
herent discrepancy between the representation capacities of
the dense and the compressed model, and the discrepancy
introduced by hardware acceleration restrictions between t-
wo compressed models. From the results, we can see these
key differences from KD, RKD, and CRD contribute to the
good effect of MIS.

We can also find even without the ground truth info from
the training set, MIS can still achieve satisfactory accuracy.

Model Algorithm
Sparsity

Ratio
Model Accuracy

Top-1 (%) Top-5 (%)

ResNet-50

Baseline 0% 76.130 92.862

BLK 70% 76.452 92.990
AGP 70% 76.496 93.080
KD 70% 75.950 92.710
RKD 70% 75.474 93.124
CRD 70% 76.432 93.190
MIS(Unsupervised) 70% 75.910 92.650
MIS(Supervised) 70% 76.558 93.188

AGP 85% 75.670 92.682
KD 85% 75.094 92.294
RKD 85% 75.546 92.746
CRD 85% 75.538 92.762
MIS(Unsupervised) 85% 75.198 92.280
MIS(Supervised) 85% 75.576 92.774

AGP 90% 74.680 92.298
KD 90% 74.014 91.794
RKD 90% 75.574 92.288
CRD 90% 74.682 92.258
MIS(Unsupervised) 90% 74.156 91.874
MIS(Supervised) 90% 74.584 92.308

AGP 95% 71.830 90.646
KD 95% 71.484 90.298
RKD 95% 71.934 90.748
CRD 95% 71.972 90.746
MIS(Unsupervised) 95% 71.414 90.288
MIS(Supervised) 95% 71.938 90.792

ResNeXt-101

Baseline 0% 78.188 93.886

BLK 75% 79.063 94.404
AGP 75% 79.078 94.468
KD 75% 79.114 94.466
RKD 75% 78.954 94.482
CRD 75% 78.958 94.462
MIS(Unsupervised) 75% 79.254 94.544
MIS(Supervised) 75% 79.348 94.682

AGP 85% 78.764 94.368
KD 85% 78.956 94.340
RKD 85% 78.866 94.384
CRD 85% 78.734 94.372
MIS(Unsupervised) 85% 78.880 94.398
MIS(Supervised) 85% 78.966 94.422

AGP 90% 78.530 94.110
KD 90% 78.560 94.150
RKD 90% 78.564 94.154
CRD 90% 78.566 94.168
MIS(Unsupervised) 90% 78.584 94.154
MIS(Supervised) 90% 78.664 94.264

AGP 95% 76.922 93.574
KD 95% 76.910 93.438
RKD 95% 77.024 93.566
CRD 95% 77.044 93.542
MIS(Unsupervised) 95% 77.058 93.596
MIS(Supervised) 95% 77.124 93.636

Table 6. Ablation experiment on contribution of each component.
(Use the image classification task as an example.)

The distillation between the different representation capac-
ities of the dense and the compressed model helps MIS to
improve the generalization without ground truth info.



2.5.3 Visualization

We apply the Class Activation Mapping (CAM) tool [30]
to the healthy model MH , the recovered model MR and the
surgical model MS for ResNet-50. CAM can highlight the
importance of the image region to the final prediction. The
visualization results are shown in Figure 3.

Ground Truth Healthy Model Recovered Model Surgical Model

Figure 3. Class activation mapping visualization. (The Recovered
Model and Surgical Model are compressed to 80% sparse level).

For CAM, the red color highlight the “attention” area of
each model. Though the surgical model is restricted by the
hardware acceleration requirements, the CAMs of MH , MR

and MS all focus on the inherent features of the Malinois,
red fox and face powder in the ground truth images, which
leading to the right classification.

3. Conclusion and ethics statement
For the open-source community, our experimental ob-

servations and the proposed compression technique could
be inspiring to the model compression field. Our study al-
so provides good guidance for people who want to try the
latest features for the newly announced A100 GPU.

Mobile applications performing object detection or
super-resolution on the client to save bandwidth can ben-
efit from simpler models. Using efficient models in the data
centers can leave more resources available to train much
more complex networks.

From the societal impact aspect, the neural models are
widely used to daily tasks like autonomous driving, med-
ical imaging, etc. Our proposed compression technique
can bring beneficial impacts on various applications. So
compressed models with higher deployment efficiency will
help in pedestrian detection, emergency protection, medical
analysis, and diagnosis. And eventually protecting people’s
safety and saving more lives.
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