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Figure 1: Improvement of reconstruction error, binned
with respect to the image position. Left: MLP+RC suf-
fers from perspective effects away from the center, while
MLP+PCL effectively compensates these leading to im-
provements of approximately 50% . Right: The consistent
difference of MLP+RC and MLP+PCL is also reflected over
a 2D tiling, showing the average MPJPE error difference of
cells with 10 or more frames on the validation set.

Appendix

A. MPI-INF-3DHP Additions
In this section, we repeat the detailed error distribution

analysis done on the H3.6M dataset for the MPI-INF-3DHP
dataset. Figure 1 depicts significant improvements from us-
ing PCL. The error by PCL is stable or even improving with
the distance to the center, while the MLP+RC model de-
grades due to perspective effects. PCL even gains an im-
provement at the image center. This is unexpected on the
first glance but can be explained with the MPI-INF-3DHP
dataset using different cameras for training and testing. The
MLP+RC model seemingly overfits to the perspectives seen
during training while the automatic correction of PCL leads
to better generalization irrespective of the image location.

In Figure 2, we can see the distribution of hip joints in
the testing dataset for H3.6M and MPI-INF-3DHP. While
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Figure 2: Tiled 2D histogram of hip joint location in nor-
malized image coordinates over the test dataset for H3.6M
(left) and MPI-INF-3DHP (right). The MPI-INF-3DHP set
shows a wider and less regular distribution.

H3.6M has most of the images around the center of the
frame, MPI-INF-3DHP contains poses that are widely
spread out across the image. This along with the fact that
MPI-INF-3DHP uses a wider field-of-view camera explains
the significant improvement we see from introducing PCL
on MPI-INF-3DHP.

B. Ablation: Model Efficiency from PCL
To demonstrate the effectiveness of using PCL (taking

perspective distortions into account), we reduce the dimen-
sion of the hidden state of our 2D-3D keypoint lifting model
and report the performance on the validation set for H3.6M.
From Table 1 we can see that even with about half the num-
ber of parameters as the baseline MLP we are able to cap-
ture a more precise reconstruction.

C. Ablation: Axis-based Rotation Experiment
To study the effects of using PCL as a post-process on

exisiting trained models, we train the baseline 2D-3D key-
point lifting MLP and apply the PCL-defined rotation ma-
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Original Image PCL Rect.

Figure 3: Toy-Cube examples. While cubes projected to
the sides of an image appear distorted and look stretched
when cropped, PCL undoes these perspective effects.

Model Linear Size # Parameters MPJPE (mm)
MLP + RC 1024 4,296,755 48.4
MLP + PCL 1024 4,296,755 43.8
MLP + PCL 896 3,300,915 45.4
MLP + PCL 768 2,436,147 46.5
MLP + PCL 512 1,099,827 50.8

Table 1: Shown are the results on 2D-3D keypoint lifting
on H3.6M while decreasing the model complexity of our
PCL embedded model (MLP + PCL) while maintaining that
of the baseline (MLP + RC). We can see here that despite
having roughly 50% of the parameters of the baseline, the
PCL-equipped model is still able to outperform the baseline.

trix on the predicted 3D pose. To this end, we experiment on
MPI-INF-3DHP since that dataset contains more perspec-
tive distortions and will have more pronounced effects from
adding the PCL-defined rotation. Along with this we also
perform a ”half-rotation” and ”full-rotation” defined as ro-
tation along only the x-axis and rotation about the x and
y-axis respectively. Furthermore, we show results for when
the 3D root is given and when scale is estimated from the
2D pose. From Table 2, we can see that when we compen-
sate the baseline model with PCL-defined rotations it im-
proves but still falls short of our model trained end-to-end
with PCL, showing the importance of incorporating PCL
during model training.

D. Ablation: Cube Dataset
The Cube Dataset contains images of a single coloured

cube with edge length 0.5m at random locations and ori-
entations within the frame. Figure 3 shows an example
of the cube used in this dataset as well as demonstrating
the perspective effects that occur when objects move away
from the image center. To further demonstrate the effect
that ignoring perspective effects has on 3D pose estimation
we introduce a variation of this dataset in which the cube

MPI INF 3DHP
2D GT + 3D Root GT 2D GT

STN 69.4 74.1
STN + Half Rotation (x) 67.6 73.1
STN + Full Rotation (x, y) 66.3 70.0
PCL 45.6 50.1

Table 2: Shown are the results on 2D-3D keypoint lifting on
MPI-INF-3DHP when applying half and full rotations. We
can see that even after including information from PCL into
the baseline model, it still falls short in terms compared to
the model that is trained with PCL.

Matching train-test set Unseen test set
Model Detector centered general
CNN + STN GT Loc. + GT Scale 6.9 13.0 13.3
CNN + PCL (Ours) GT Loc. + GT Scale 6.9 8.2 8.5
CNN + STN Trained End-to-End 5.9 11.2 -
CNN + PCL (Ours) Trained End-to-End 5.9 6.8 -

Table 3: Shown are the reported MPJPE in millimeters for
all tests conducted on the Cube Dataset and its variation.
For this metric, lower values are better. We can see that our
method produces more accurate results while at the same
time generalizing better to unseen instances.

has a random orientation but is always placed at the cen-
ter of the frame. We refer to this variation as the Centered
Cube Dataset. We now train models on the Centered Cube
Dataset with a central crop and analyze their generalization
capabilities to crops from the general dataset with the po-
sition of the cube given. On this dataset, the baseline at-
tains an MPJPE of 13mm and our PCL variant improves to
8.2mm. The improvement for end-to-end training is equiv-
alent, with an 4.4mm improvement from 11.2 to 6.8mm.
While this test is simplistic, the synthetic nature allows us
to analyze the generalization capabilities of PCL by train-
ing on a version of the cube dataset where the cube is al-
ways centered in the training images and tested on the orig-
inal version with general position, with the ground truth 2D
crop location provided. PCL shows good generalization,
outperforming the baseline by 36.1% on the unseen test set.
Table 3 compares the performance of PCL and STN mod-
els on these two datasets. We also investigated the effect of
illumination by switching from point lights to ambient illu-
mination, which had negligible effect on the reconstruction
quality.

E. Implementation Details
We normalize the 2D input poses and 3D output poses

with their mean and standard deviation. On the input side,
the mean and standard deviation are computed after the PCL
layer and in the case of rectangular cropping (RC) after the
crop and scaling operation. On the output side, the mean
and standard deviation for PCL and the baselines are com-
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puted in the pelvis-centered coordinates. We found it more
effective to multiply the output by the computed standard
deviation and adding the mean instead of doing the inverse
operation on the label. This ensures that the network output
has mean zero and unit standard deviation, which fares well
with network layer initialization, while the loss operates on
the scales of the original output space.

F. Derivations of the PCL Virtual Camera
Rotation Derivation. The rotation that maps from the vir-
tual to the real camera, Rvirt→real, stems from the defini-
tion of rotation matrices. We use the right-handed rule, i.e.,
counter-clockwise rotation for positive angles and a right-
handed coordinate system with the y-axis pointing down-
wards, x-axis rightwards, and positive z pointing in cam-
era direction. The definition of Rvirt→real = RyRx reads
thereby

RyRx =

[
cos(φ) 0 sin(φ)

0 1 0
− sin(φ) 0 cos(φ)

][
1 0 0
0 cos(θ) − sin(θ)
0 sin(θ) cos(θ)

]

=

[
cos(φ) sin(φ) sin(θ) cos(θ) sin(φ)

0 cos(θ) − sin(θ)
− sin(φ) sin(θ) cos(φ) cos(φ) cos(θ)

]
, (1)

where φ and θ are, respectively, the vertical and horizontal
rotations depicted in Figure 2 of the main document. The
equation given in the main document follows from the fol-
lowing trigonometric relations,

sin(φ) =
px√
1 + p2

x

, cos(φ) =
1√

1 + p2
x

,

sin(θ) =
−py√

1 + p2
x + p2

y

, cos(θ) =

√
1 + p2

x√
1 + p2

x + p2
y

,

(2)

where p is the point on the original image plane to which
the virtual camera is rotated.

Virtual Focal Length Selection The focal length of the
virtual camera defines the zoom level of the PCL crop. It
controls the crop size in the original images. Therefore, it
needs to be set individually for every crop target, depending
on its desired size and position in the image. In the fol-
lowing, we explain the derivation of the three options we
propose. Figure 4 shows example crops of each method and
their tightness of fit.

A. By setting hvirt to f , the camera is only rotated, without
any change in zoom. A crop is obtained by scaling
with factor s, that means, f = h

s . Figure 4, second row,
shows that this simple choice leads to inconsistent crop
sizes. The object appears smaller the further away it is.
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Figure 4: Effect of virtual camera focal length. The pro-
posed options for setting the virtual focal length scale dif-
ferently with respect to the image position. When given the
pixel cube width as input (as a factor of the entire image
resolution), only option C maintains the desired margin of
10 % between cube and crop boundary. The ground truth
is a cube placed at the center of the screen rotated by the
same angle that the virtual camera is rotated by. Remain-
ing differences in color stem from the position-dependent
illumination effects.

B. By multiplying the virtual length with ‖p‖, the dis-
tance of the crop target position on the image plane to
the camera center, this distance-related effect is com-
pensated. However, as the third row in Figure 4 shows,
this match is not perfect as it does not account for the
foreshortening effect when projecting from the origi-
nal image plane onto the virtual one.

C. Our final choice models foreshortening with
hvirt
x = fx‖p‖

√
p2
x + 1 and

hvirt
y = fy

‖p‖2√
p2

x+1
. It is derived as follows.

Derivation of Option C. Let p = (x, y, z)> be the tar-
get crop position on the image plane, a 3D position. By
construction, p will be at the image center. Therefore, pro-
jecting the infinitesimal motion offset p+ (δx, δy, 0)> and
comparing the ratio of the offset in the original and projec-
tion yields the desired scale estimate. Formally, we write

(u, v, 1)T = P
(
p+ (δx, δy, 0)>

)
, (3)

where P projects points in the original coordinate system to
the virtual one, as defined in the main document. For the
sake of simpler equations we do computations in camera
coordinates with the origin at the image center and the focal
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length f = 1. In this case, P = R−1virt→real. Using the defini-
tion of Rvirt→real above, the identity R−1virt→real = R>virt→real,
and computing the partial derivatives with respect to δx and
δy at δx = δy = 0 we obtain

∂(u, v, 1)T

∂u

∣∣∣
δu=0

=
1√

(1 + x2)‖p‖
(4)

and
∂(u, v, 1)T

∂v

∣∣∣
δv=0

=

√
(1 + x2)

‖p‖2
. (5)

These equations compute the horizontal and vertical pixel
scale ratio between the original and virtual image at p. To
maintain the scale, the focal length must be set to the inverse
of this scaling factor, which is Option C for f virt that also
incorporates the original focal length and the desired crop
scale.

Note that the equations for hvirt
x and hvirt

y are not equiv-
alent with x and y exchanged because the x and y axes in
the virtual camera do not, in general position, project to per-
pendicular lines in the original view. Figure 1 of the main
paper provides examples of this perspective effect. In our
definition, the up-direction is kept fixed and the horizontal
axis is rotated, therefore, behaving differently in the slant
compensation. An equivalent formulation could be derived
with the horizontal axis fixed and the vertical axis rotated.

Maintaining the original aspect ratio To enable compu-
tations with a different focal length in the x and y directions,
which models the case of non-square pixels, the above nota-
tion was performed individually for the horizontal and ver-
tical directions. This, however, can lead to stretched crops
if different scales are predicted for s in horizontal and verti-
cal directions. To maintain the original aspect ratio, we set
the focal length to the minimum of the axis-specific lengths.
This leads to a crop that is the same or larger than the origi-
nal one with mismatching aspect ratio, thereby strictly con-
taining the object of interest.
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