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In this supplementary document, we discuss implemen-
tation details and provide additional results.

A. Additional Results
In this section, we provide additional qualitative and

quantitative results for several key experiments. The reader
is encouraged to refer to the video and website for a richer,
animated presentation of qualitative results.

A.1. Category-agnostic ShapeNet: Random Results

We show randomly sampled results for the category-
agnostic setting (§ 5.1.2) in Fig. 1, Fig. 2, and Fig. 3. Specif-
ically, we sample 6 uniformly random objects for each of
the 13 largest ShapeNet categories and show comparisons
to the baselines [5, 7, 9] as in the main paper. Two random
views are selected from the 24 available views to be source
and target views respectively.

A.2. Generalization to novel categories

In Table 1 we show a detailed breakdown of metrics by
category on unseen categories, as promised in the main pa-
per.

A.3. Two-object Scenes

We show samples from our rendered dataset in Fig. 4. An
analysis of performance as more views become available is
in Table 2, for our method when compared with SRN. We
also show randomly sampled results of scenes when given
two input views in Figure 5. We train our model using two
random views, and give the model either one, two, or three
fixed informative views during inference.

A.4. DTU

In Fig. 6, we show quantitative results for each scene as
well as renderings of of all test scenes not shown in the main
paper.

In Table 3 we provide means and standard deviations of
metrics for our method and NeRF on the DTU test set, with
1, 3, 6, 9 views. The PSNR here was plotted in Fig. 10 of
the main paper

B. Reproducibility

B.1. Implementation Details

Here we describe implementation details in the interest
of reproducibility. A general remark is that due to the high
compute cost, we did not spend significant effort to tune
the architecture or training procedure, and it is possible that
variations can perform better, or that smaller models may
suffice.

Encoder E As briefly discussed in the main paper, we
use a ResNet34 backbone and extract a feature pyramid by
taking the feature maps prior to the first pooling operation
and after the first ResNet 3 layers. For a H ×W image, the
feature maps have shapes

1. 64×H/2×W/2
2. 64×H/4×W/4
3. 128×H/8×W/8
4. 256×H/16×W/16

These are upsampled bilinearly to H/2 × W/2 and con-
catenated into a volume of size 512 × H/2 × W/2. For
a 64 × 64 image, to avoid losing too much resolution,
we skip the first pooling layer, so that the image reso-
lutions are at 1/2, 1/2, 1/4, 1/8 of the input rather than
1/2, 1/4, 1/8, 1/16. We use ImageNet pretrained weights
provided through PyTorch.

NeRF network f We employ a fully-connected ResNet
architecture with 5 ResNet blocks and width 512, similar to
that in [7]. To enable arbitrary number of views as input,
we aggregate across the source-views after block 3 using an
average-pooling operation. This architecture is illustrated
in Fig. 8. We remark that due to computational cost, we did
not tune this architecture very much in practice.

Hierarchical volume sampling To improve the sampling
efficiency, in practice, we also use coarse and fine NeRF
networks fc, ff as in the vanilla NeRF [6], both of which
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Figure 1: Randomly sampled results. part 1
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Figure 2: Randomly sampled results. part 2
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Figure 3: Randomly sampled results. part 3

share an identical architecture described above. Note that
the encoder E is not duplicated.

More precisely, we use 64 stratified uniform and 16 im-
portance samples, and additionally take 16 fine samples
with a normal distribution (SD 0.01) around the expected
ray termination (i.e. depth) from the coarse model, to fur-
ther promote denser sampling near the surface.

NeRF rendering hyperparameters We use positional en-
coding γ from NeRF for the spatial coordinates, with expo-

nentially increasing frequencies:

γ(x) =



sin(20ωx)
cos(20ωx)
sin(21ωx)
cos(21ωx)

...
sin(2L−1ωx)
cos(2L−1ωx)


(1)

Note that we do not apply the encoding to the view direc-
tions. In all experiments, we set L = 6. We also con-
catenate the input coordinates along the encoding as in the
NeRF implementation. ω is a scaling factor, set (rather ar-
bitrarily) to 1.5 for the single-category, category-agnostic
ShapeNet experiments as well as the DTU experiment, and
to 2.0 for the multi-object experiment. While the exponent
base can be tuned, in practice we left it at 2 as in NeRF.
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bench cbnt. disp. lamp spkr. rifle sofa table phone boat mean

↑ PSNR
DVR 18.37 17.19 14.33 18.48 16.09 20.28 18.62 16.20 16.84 22.43 17.72
SRN 18.71 17.04 15.06 19.26 17.06 23.12 18.76 17.35 15.66 24.97 18.71
Ours 23.79 22.85 18.09 22.76 21.22 23.68 24.62 21.65 21.05 26.55 22.71

↑ SSIM
DVR 0.754 0.686 0.601 0.749 0.657 0.858 0.755 0.644 0.731 0.857 0.716
SRN 0.702 0.626 0.577 0.685 0.633 0.875 0.702 0.617 0.635 0.875 0.684
Ours 0.863 0.814 0.687 0.818 0.778 0.899 0.866 0.798 0.801 0.896 0.825

↓ LPIPS
DVR 0.219 0.257 0.306 0.259 0.266 0.158 0.196 0.280 0.245 0.152 0.240
SRN 0.282 0.314 0.333 0.321 0.289 0.175 0.248 0.315 0.324 0.163 0.280
Ours 0.164 0.186 0.271 0.208 0.203 0.141 0.157 0.188 0.207 0.148 0.182

Table 1: Generalization to novel categories. Expanding on Table 5 in the main paper, we show quantitative results with a
breakdown by category.

1-view 2-view 3-view

↑ PSNR ↑ SSIM ↓ LPIPS ↑ PSNR ↑ SSIM ↓ LPIPS ↑ PSNR ↑ SSIM ↓ LPIPS

SRN 13.76 0.658 0.422 14.28 0.660 0.432 14.67 0.664 0.431
Ours 20.15 0.767 0.274 23.40 0.832 0.207 23.68 0.800 0.206

Table 2: Performance on synthetic two-object dataset with increasing number of views at test time. Image quality
metrics for SRN and our method, when increasing the number of views given at test time.

The sampling bounds were set manually for each dataset.
They were [1.25, 2.75] for ShapeNet chairs, [0.8, 1.8] for
ShapeNet cars, [1.2, 4.0] for Kato et al. [2] renderings (cat-
egory agnostic, novel category), [4.0, 9.0] for our rendered
2-object dataset, and [0.1, 5.0] for input.

We use a white background color in NeRF to match
the ShapeNet renderings, except in the DTU setup where
a black background is used.

Model implementation We implement all models using
the PyTorch [8] framework.

B.2. Experimental Details

We first provide general details about the metrics and
training procedure common to all experiments, then present
more specific details for each experimental setting in sub-
sections.

Metric details We use PSNR and SSIM from the scikit-
image [10] package as in SRN [9], whereas LPIPS is com-
puted with the code provided by the LPIPS authors [12] af-
ter normalizing the pixel values to the [−1, 1] range. We use
the VGG network version of LPIPS following NeRF [6].

Training For all experiments, we take the learning rate to
be 10−4. We use a batch size of 4 instances and 128 rays
per instances.

B.2.1 Single-category ShapeNet

We train for 400000 iterations, which took roughly 6 days
on a single Titan RTX. For efficiency, we sample rays from
within a tight bounding box around the object for the first
300000 iterations, after which we remove the bounding box
to avoid background artifacts. Further, we use 2 input views
for the first 300000 iterations and after that, we randomly
choose to take either 1 or 2 views as input to encourage the
model to work with either 1 or 2 views.

SRN’s evaluation protocol is followed: in the 1-view
case, we use view 64 as input, and in the 2-view case, we
use views 64 and 128.

Baselines For SRN [9], we use the pretrained chair model
from the public GitHub repository. Note that SRN requires
a test-time training step (latent inversion) to generate result
images; we apply latent inversion for 170000 iterations for
both the 1-view and 2-view cases for chairs.

Recall that, due to a camera sampling bug, we use an
updated car dataset provided by the SRN author. Thus, we
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(a) Train set

(b) Test set

Figure 4: Randomly sampled images from the synthetic two-object scene dataset

follow instructions in the Github to train a model on the
new dataset; we train for 400000 iterations and apply latent
inversion for 100000 iterations for each of the 1-view and
2-view cases. Note the quantitative results we report are
slightly lower than that in [1] in the single-view case, but

substantially higher than in the original SRN paper, which
used the bugged renderings. For the remaining baselines,
we only report numbers from the relevant papers on the
same task.
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Input views SRN Ours GT Input views SRN Ours GT

Figure 5: Randomly sampled results for two object scenes, when given two input views.

1 View 3 View 6 View 9 View

PSNR SSIM LPIPS PSNR SSIM LPIPS PSNR SSIM LPIPS PSNR SSIM LPIPS

Ours Mean 15.55 0.537 0.535 19.33 0.695 0.387 20.43 0.732 0.361 21.10 0.758 0.337
SD 1.87 0.127 0.081 2.59 0.131 0.105 2.66 0.115 0.102 2.71 0.102 0.094

NeRF Mean 8.00 0.286 0.703 9.85 0.374 0.622 18.59 0.719 0.347 22.14 0.820 0.262
SD 3.20 0.093 0.055 4.69 0.173 0.137 4.72 0.177 0.133 4.33 0.131 0.109

Table 3: DTU aggregate metrics vs. NeRF. Expanding on Fig. 10 in the main paper, we compare our method to NeRF
on DTU test scenes quantitatively. Recall higher is better for PSNR and SSIM, while lower is better for LPIPS. Note that
PixelNeRF is a feed-forward method, while a NeRF was optimized for 14 hours for each scene and set of input views.

Full Name cabinet display speaker
Abbreviation cbnt. disp. spkr.

Table 4: ShapeNet category name abbreviations.

B.2.2 Category-agnostic ShapeNet

We train our model for 800000 iterations on the entire train-
ing set, where rays are sampled from within a tight bound-
ing box for the first 400000 iterations. This took about 6
days on an RTX 2080Ti.
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Input: 3 views of held-out scene Novel views NeRF

Figure 6: Additional DTU results. Views from the remaining 9 scenes are shown.

Evaluation protocol As discussed in the main paper, we
evaluate on the test split from [2] as provided by DVR [7].
To ensure fairness, we sampled a random input view to en-
code for each object and use this view for all baselines as
well.

Baselines For DVR [7], we use the pretrained 2D
multiview-supervised model from the public GitHub and
the provided rendering code (in render.py). For Soft-
Ras [5], we similarly use the pretrained ShapeNet model
from the public GitHub repo and obtain images using their
renderer library.

Since SRN [9] did not originally evaluate in this setting,
we train a model for this category-agnostic setting using the

public code. We train for 1 million iterations and perform
latent inversion for 260000 iterations, taking about 14 days
on a Titan RTX in total.

B.2.3 Generalization to Novel Categories

We train our model for 680000 iterations across all in-
stances of 3 categories: airplane, car, and chair. Rays
are sampled from within a tight bounding box for the first
400000 iterations. This took about 5 days on a GTX 1080Ti.

Evaluation protocol Since there are more than 25000 ob-
jects in the 10 remaining categories, it would be computa-
tionally prohibitive to evaluate on all of them. For our pur-
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Figure 7: DTU split overlap. The first and third scans (115, 119) are from the standard DTU training set from MVSNet,
while the second and fourth (114, 118) are from the test set. In our split, highly similar scenes are either all placed in the
same set or discarded.
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Figure 8: Multi-view NeRF Network Architecture. We use notation established in § 5.1.2 of the main paper, where
γ denotes a positional encoding with 6 exponentially increasing frequencies. Each linear layer is followed by a ReLU
activation. Note that in the single-view case, f1 and f2 can be considered a single ResNet f = f2 ◦ f1.

poses, we sample 25% of the objects from each category
for testing, using the remaining for validation. The proto-
col otherwise remains the same as in the category-agnostic
model (§ B.2.2).

Baselines We train SRN and DVR as in § B.2.2. For
DVR [7] we turned off the use of visual hull depth for sam-

pling, since this information was not provided for all in-
stances of the dataset shipped with DVR.

B.2.4 Two-object Scenes

We generate more complex synthetic scenes consisting of
two ShapeNet chairs. We subdivide ShapeNet chairs into
2715 training instances and 1101 test instances. We gener-
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ate scenes by randomly placing instances within each split
around the origin, rotated randomly about each object’s
z-axis, and render 128 × 128 resolution images. Per in-
stance, we render 20 training views sampled binned uni-
form on the hemisphere, and 50 testing views sampled on
an Archimedean spiral, similar to the SRN protocol.

We compare with SRN [9] as our baseline on this task,
using the publicly available code. We note that SRN per-
forms prediction in a canonical object-centric coordinate
system, and used this version for this task. We train a model
for evaluation on this two-object dataset using one, two, and
three input views. We first train the model for 1 million it-
erations. Then for each number of input views, we fix the
set of input views per instance and perform latent inversion
for 150,000 iterations.

B.2.5 Sim2Real on Real Car Images

We use car images from the Stanford Cars dataset [4].
PointRend [3] is applied to the images to obtain foreground
masks and bounding boxes. After removing the background
with this mask, the image is then translated and rescaled so
that the center of the bounding box is at the center of the
image and the shorter side of the bounding box is 1/4 of
the image side length, 128. This normalization heuristic is
motivated by the observation that the shorter side roughly
corresponds to the height or width of the car, which is a
more constant quantity than the length.

For evaluation, we set the camera pose to identity and
use the same sampling strategy and bounds as at train time
for the single-category cars model.

B.2.6 Real Images on DTU

A single model is trained on the 88 training scenes. We
use exposure level 3 only. Note that while there are sev-
eral views per scene with incorrect exposure throughout the
DTU dataset, we did not remove them for training purposes.
At each training step, a random color jitter augmentation is
applied equally to all views of each object.

Dataset details While we solve a very different task
from MVSNet [11] which predicts depth maps from short-
baseline views and is 2.5D supervised, we considered using
the MVSNet [11] DTU split to conform to standards for
training on DTU. However, we found that the the split con-
tained effective overlap across the train/val/test sets, making
it a poor benchmark of cross-scene generalization, as shown
in Fig. 7. For our purposes, we created a different split to
avoid this issue: we use scans 8, 21, 30, 31, 34, 38, 40, 41,
45, 55, 63, 82, 103, 110, 114 for testing and all other scans
except 1, 2, 7, 25, 26, 27, 29, 39, 51, 54, 56, 57, 58, 73, 83,
111, 112, 113, 115, 116, 117 for training.

We downsampled all DTU images to 400× 300 and ad-
justed the world scale of all scans by a factor or 1/300.

Evaluation protocol We separately evaluate using 1, 3, 6,
9 informative input views and calculate image metrics with
the remaining views. Specifically, we selected views 25, 22,
28, 40, 44,48, 0, 8, 13 for input, taking a prefix of this list
when less than 9 views are used. We exclude the views with
bad exposure (they are 3, 4, 5, 6, 7, 16, 17, 18, 19, 20, 21,
36, 37, 38, 39) for testing.

Baselines We train a total of 60 NeRFs for comparison,
one for each scene and number of input views, using the
original NeRF TensorFlow code. Each NeRF is trained for
400000 iterations with ray batch size 128, which takes about
14 hours on an RTX Titan, to ensure convergence.

We found that NeRF did not converge in 5 cases when
given 6 or 9 views, including in the case of smurf (scan 82)
shown in the video. This is possibly due to exposure varia-
tion in the DTU dataset. For these scenes, we initialized the
model to the trained weights for the same scene with 3 less
views and train for about 200000 additional iterations to get
reasonable results.
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