
Supplementary Materials for
STaR: Self-supervised Tracking and Reconstruction of Rigid Objects in Motion

with Neural Rendering

A. Overview
In this document, we provide technical details in support

of our main paper. Below is a summary of the contents.

Sec. B: Description of supplementary video;
Sec. C: Mesh reconstruction and 6D pose tracking results;
Sec. D: MLP architecture and volume rendering details;
Sec. E: Synthetic and real-world data preparation;
Sec. F: Derivation of SE(3) pose Jacobian.

B. Video
We encourage the reader to watch our supplementary

video at https://wentaoyuan.github.io/star,
where we visualize the following results.

• We first show a comparison of STaR against NeRF
[3], NeRF-time and NeRF-W [2] on the rendering of
novel spatial-temporal views on the lamp and desk and
kitchen table sequences. The rendered videos are 20x
slow motion of the training videos from a continuously
varying camera view unseen during training, where
STaR achieves superior perceptual quality compared
to the baselines.

• Then, we visualize the decomposition of static and dy-
namic components learned by STaR on the moving ba-
nana sequence by showing how static background and
dynamic foreground can be seamlessly removed dur-
ing spatial-temporal novel view rendering. Similarly,
the rendered video is a 20x slow motion of the train-
ing videos from a continuously varying camera view
unseen during training. We also visualize the disparity
map rendered by STaR.

• Finally, we show results of photorealistic animation of
unseen object motion in lamp and desk and moving ba-
nana. Specifically, we compose the static and dynamic
NeRFs using a set of poses significantly different from
the poses seen during training (see Fig. 6 in the main
paper for a visualization of the trajectories) and ren-
dered the composed NeRF from a continuously vary-
ing camera view unseen during training. Remarkably,

without any prior knowledge about the scene geome-
try of the object motion, STaR is able to learn a fac-
tored representation that allows it to photorealistically
synthesize novel spatial-temporal views of novel ob-
ject motion, which no existing method can do.

C. Additional Applications
Mesh Reconstruction The separation of static and dy-
namic components learned by STaR allows us to reconstruct
a 3D mesh of the unknown dynamic object. Specifically, we
can query the dynamic NeRF using a dense 3D grid over a
training camera’s view frustum, then threshold the density
outputs (i.e. setting σD = 0 if σD < σmin) and run march-
ing cubes to obtain a 3D mesh. Fig. 1 visualizes the re-
constructed meshes of the dynamic objects compared to the
ground truth in the two synthetic videos used in our paper,
lamp and desk and kitchen table.

We also use MeshLab to compute the mean Hausdorff
distance between the reconstructed mesh and the ground
truth. We report the distances in Tab. 1 as percentage of
the ground truth mesh’s bounding box diagonal. We use
voxel size 0.002 for lamp and desk, voxel size 0.0001 for
kitchen table, and density threshold 50 for both scenes. The
reconstructed meshes are post-processed by excluding ev-
erything outside of a manually specified 3D bounding box
and aligned with the ground truth meshes using ICP.

Lamp and desk Kitchen table

Hausdorff distance 0.55% 3.59%

Table 1: Hausdorff distance between the reconstructed and
ground truth mesh as percentage of the ground truth mesh’s
bounding box diagonal.

6DoF Pose Tracking In addition to reconstructing geom-
etry and appearance, STaR also outputs the relative 6D pose
between the static and dynamic volume. We can use the
output poses to accurately track the relative motion of the

1

https://wentaoyuan.github.io/star


(a) Reconstructed (left) and ground truth (right) chair in lamp and desk (b) Reconstructed (left) and ground truth (right) vase in kitchen table

Figure 1: Comparison of reconstructed mesh of the dynamic object and the ground truth.

dynamic object. In Tab. 2, we report error in the relative
pose difference of the dynamic object between neighbor-
ing key frames estimated by STaR compared against the
ground truth. The rotation error is computed in degree and
the translation error is computed as percentage of the diag-
onal of the object’s 3D bounding box.

Lamp and Desk Kitchen table

Rotation error 0.502 3.198
Translation error 0.76% 3.60%

Table 2: Rotation and translation error of the dynamic
object’s relative motion between key frames estimated by
STaR. Translation error is computed as percentage of the
object’s bounding box diagonal.

D. Implementation Details
MLP Architecture Fig. 2 shows the architecture of
MLPs used by STaR (NeRF), NeRF-time and NeRF-W re-
spectively. STaR uses the same MLP architecture as NeRF
for both static volumeFSθ and dynamic volumeFDθ . NeRF-
time shares the same MLP architecture except for using
positional-encoded time as additional input. In practice, the
time parameter before positional encoding is the frame in-
dex linearly projected on to the interval [−1, 1]. NeRF-W
(more precisely, its variant NeRF-U since we don’t use ap-
pearance embedding) uses the same MLP architecture as
NeRF for the coarse network, but its fine network takes an
additional 16-dimensional latent code and outputs transient
density, color and uncertainty in addition to static density
and color. Please refer to [2] for more details about the ar-
chitecture of NeRF-W.

Volume Rendering For STaR and all baselines, we use 64
stratified samples per ray for the coarse network and addi-
tional 64 importance samples (in total 128 samples) for the
fine network. Following [3], we add small Gaussian noise to
the density outputs during appearance initialization but turn
it off during online training. We adjust the absolute scale
of the camera’s view frustum so that it roughly lies within
the cube [−1, 1]3. For synthetic data, this can be done by
scaling the rendered content. For real data, we translate the
camera poses so that the world coordinate center aligns with
the center of the average camera’s view frustum. Then we
scale the camera poses’ translation component by half of
the distance from the near bound to the far bound.

E. Data Preparation
Synthetic Data Generation The synthetic video se-
quences are rendered with Blender Cycles rendering engine
using photorealistic assets created by professional design-
ers on Blend Swap. The 8 training cameras are arranged
in a 2 × 4 array, focusing on the same target point in the
scene. The evaluation camera is also looking at the same
direction from a similar distance but its location is different
from the training cameras. The camera poses remain fixed
throughout the video.

Real World Data Capture The real-world video se-
quence is captured using a 20-camera rig. The cameras are
arranged in a 2×10 array. We discard 3 cameras that are not
synced with the others, use 16 cameras for training and 1 re-
maining camera for evaluation. The camera poses are also
fixed and can be obtained by running COLMAP’s structure
from motion pipeline on images from the first frame. The
original image resolution is 2704 × 2028 and is downsam-
pled to 676× 507 for training and evaluation.

2



(a) STaR (NeRF) (b) NeRF-time (c) NeRF-W (NeRF-U)

Figure 2: Architecture of MLPs used in STaR (NeRF), NeRF-time and NeRF-W. Input, network layers and outputs are
marked in green, blue and yellow respectively, with their dimensions labeled beneath. Blue, black, yellow and green arrows
denote linear transformations with no activation, ReLU activation, sigmoid activation and softplus activation respectively
and + denotes concatenation. γ denotes positional encoding and x,d, σ, c denotes 3D location, viewing direction, volume
density and radiance. l(τ) is the latent code taken by NeRF-W to generate transient density σ(τ), color c(τ) and uncertainty
β.

F. Jacobian for Pose Gradient
Let p ∈ R3 be a 3D point and T ∈ SE(3) be a pose with

associated transformation matrix

T =

[
r1 r2 r3 t
0 0 0 1

]
(1)

where T [p] denotes the transformation of p with respect
to T . Let ε ∈ se(3) be a local perturbation on the SE(3)
manifold. We are interested in the derivative of exp(ε)T [p]
with respect to ε at ε = 0:

∂ exp(ε)T [p]

∂ε

∣∣∣∣
ε=0

=
∂S[p]

∂S

∣∣∣∣
S=exp(ε)T=T

∂ exp(ε)[T ]

∂ε

∣∣∣∣
ε=0

(2)

=
([
p> 1

]
⊗ I3

)
03×3 −r∧1
03×3 −r∧2
03×3 −r∧3
I3 −t∧


(3)

=
[
I3 −(T [p])∧

]
(4)

where ⊗ denotes Kronecker product. The result is a 3 × 6
Jacobian matrix, where x∧ is the cross product matrix

x∧ =

 0 −x3 x2
x3 0 −x1
−x2 x1 0

 (5)

We encourage the reader to read [1] for more details about
the on-manifold optimization of SE(3) transformations.

References
[1] Jose-Luis Blanco. A tutorial on se (3) transformation pa-

rameterizations and on-manifold optimization. University of
Malaga, Tech. Rep, 3:6, 2010. 3

[2] Ricardo Martin-Brualla, Noha Radwan, Mehdi SM Sajjadi,
Jonathan T Barron, Alexey Dosovitskiy, and Daniel Duck-
worth. Nerf in the wild: Neural radiance fields for uncon-
strained photo collections. arXiv preprint arXiv:2008.02268,
2020. 1, 2

[3] Ben Mildenhall, Pratul P Srinivasan, Matthew Tancik,
Jonathan T Barron, Ravi Ramamoorthi, and Ren Ng. Nerf:
Representing scenes as neural radiance fields for view synthe-
sis. pages 405–421, 2020. 1, 2

3


