
Appendix
This appendix is organized as follows:

• Section A.1 proves the theorem in Section 3.4 as a
corollary of [3];

• Section A.2 gives the implementation details of
our model in ZSL (Section A.2.1) and OSR (Sec-
tion A.2.2);

• Section A.3 includes additional experimental results;
Specifically, Section A.3.1 shows additional results on
two-stage inference and a comparison between entan-
gled and disentangled model in ZSL Accuracy. Sec-
tion A.3.2 shows additional results for OSR, with the
details of the 5 splits that we used and the F1 score for
each split, closed-set accuracy, a comparison between
entangled and disentangled model and more qualitative
results.

A.1. Proof of the Theorem in 3.4
Let V = (Z, Y ) and V takes values from the space V .

For class attribute Y that is aK-dimensional real vector, de-
note E = {e1, . . . , eK} as the subset of dimensions spanned
by the class attribute Y , and Ē as those by the sample at-
tributeZ. Therefore, VE and V Ē represent the space of class
attribute Y and sample attribute Z, respectively. We use
g : V → X to denote the endogenous mapping to the fea-
ture spaceX . Note that this g corresponds to sampling from
Pθ(X|Z, Y ) in our GCM. We will introduce the concept of
embedded GCM to facilitate the proof.
Definition (Embedded GCM). We say that a GCM is em-
bedded if g : V → X is a continuous injective function with
continuous inversion g−1.

Using the results in [1], if V is compact (i.e., bounded),
the GCM is embedded if and only if g is injective. Though
we implement our GCM using VAE, whose latent space is
not compact, it is shown that restricting a VAE to a prod-
uct of compact intervals that covers most of the probabil-
ity mass (using KL-divergence in the objective) will re-
sult in an embedded GCM that approximates the original
one for most samples [3]. Moreover, Pθ(X|Z, Y ) are im-
plemented using deterministic mappings in our model (see
Section A.2.1, A.2.2), which are indeed injective as shown
in [12]. Therefore, without loss of generality, our GCM can
be considered as embedded. We will give the formal def-
inition of intrinsic disentanglement, which can be used to
show that group disentanglement of Z and Y leads to faith-
fulness.
Definition (Intrinsic Disentanglement). In a GCM, the en-
domorphism T : X → X is intrinsically disentangled with
respect to the subset E of endogenous variables, if there ex-
ists a transformation T ′ affecting only variables indexed by

E , such that for any v ∈ V ,

T (g(v)) = g(T ′(v)). (1)

Now we will first establish the equivalence between in-
trinsic disentanglement and faithfulness using the theorem
below.
Theorem (Intrinsic Disentanglement and Faithfulness).
The counterfactual mapping Xy[z(X)] is faithful if and
only if it is intrinsically disentangled with respect to the sub-
set E .

To prove the above theorem, one conditional is trivial: if
a transformation is intrinsically disentangled, it is by defini-
tion an endomorphism of X so the counterfactual mapping
must be faithful. For the second conditional, let us assume
a faithful counterfactual mapping Xy[z(X)]. Based on the
three steps of computing counterfactuals and the embedding
property discussed earlier, the counterfactual mapping can
be decomposed as:

Xy[z(X)] = g ◦ T ′ ◦ g−1(X), (2)

where ◦ denotes function composition, T ′ is the counterfac-
tual transformation of V as defined in Section 3.2, where Z
is kept as Z = z(X) and Y is set as y. Now for any v ∈ V ,
the quantity Xy[z(g(v))] can be similarly decomposed as:

Xy[z(g(v))] = g ◦ T ′ ◦ g−1 ◦ g(v) = g ◦ T ′(v). (3)

Since T ′ is a transformation that only affects variables in
E (i.e., Y), we show that faithful counterfactual transforma-
tion Xy[z(X)] is intrinsically disentangled with respect to
E .

In our work, we define group disentanglement of Z and
Y as intrinsic disentanglement with respect to the set of
variables in Y . We used the sufficient condition by learning
a GCM where Y and Z are group disentangled, such that
when we fix Z and only change Y , the resulting generation
lies in X according to the theorem that we just proved. We
also exploited the necessary condition by training for faith-
fulness through the WGAN loss, which in turn encourages
the group disentanglement of Z and Y .

A.2. Implementation Details
A.2.1. ZSL

Our GCM implementation is based on the generative
models in TF-VAEGAN [10]. Besides Pθ(X|Z, Y ) and
Qφ(Z|X) that is common in a VAE-GAN [7], it addition-
ally implements Qψ(Y |X) and a feedback module, which
takes the intermediate layer output from the network in
Qψ(Y |X) as input and generate a feedback to assist the
generation process Pθ(X|Z, Y ). The rest of the section
will detail the network architecture for each component, fol-
lowed by additional training and inference details supple-
mentary to Section 3.4 and 3.3, respectively.



Sample Attribute Z. The dimension of sample attribute Z
is set to be the same as that of the class attribute for each
dataset. For example, in CUB [16], the dimension of Z is
set as 312. P (Z) is defined as N (0, I) for all datasets.
Decoder Pθ(X|Z, Y ). The module that implements this
conditional distribution is commonly known as the decoder
in literature [13, 10]. We implemented Pθ(X|Z, Y ) with
Deep Gaussian Family N (µD(Z, Y ), I) with its variance
fixed and mean generated from a network µD. µD was im-
plemented with a Multi-Layer Perceptron (MLP) with two
layers and LeakyReLU activation (alpha=0.2) in between.
The input to the MLP is the concatenated Z and Y . The
hidden layer size is set as 4,096. The MLP outputs a real
vector of size 2,048 (same as that of X) and the output
goes through a Sigmoid activation to produce the mean of
Pθ(X|Z, Y ).
Encoder Qφ(Z|X). For convenience, we refer to
Qφ(Z|X) as the encoder. We implemented Qφ(Z|X) with
N (µE(X), σ2

E(X)), where µE(X), σ2
E(X) are neural net-

works that share identical architecture. Specifically, they
are 3-layer MLP with LeakyReLU activation (alpha=0.2)
that takes X as input and outputs a vector with the same
dimension as Z. The first hidden layer size is set as 4,096
and the second hidden layer size is set as two times of the
dimension of Z. Note that in the original TF-VAEGAN im-
plementation, the encoder additionally conditions on Y . We
argue that this may cause the encoded Z to contain informa-
tion about Y , undermining the disentanglement. Hence we
make the encoder conditioned only on X .
RegressorQψ(Y |X). It is a 2-layer MLP with LeakyReLU
activation (alpha=0.2). The hidden layer size is set as 4,096.
Discriminator D(X,Y ). It is a 2-layer MLP with
LeakyReLU activation (alpha=0.2). It takes the concate-
nated X and Y as input and outputs a single real value. The
hidden layer size is set as 4,096.
Feedback Module. It is a 2-layer MLP with LeakyReLU
activation (alpha=0.2). The hidden layer output of the re-
gressor is sent to the feedback module as input. This mod-
ule generates a real vector with 4,096 dimensions, which is
added to the hidden layer output of µD as feedback signal.
Datasets. The details of ZSL datasets are given in Table A1.

Dataset Granularity Total |S| |U|
CUB [16] Fine 11,788 150 50
SUN [18] Fine 14,340 645 72
AWA2 [17] Coarse 37,322 40 10
aPY [4] Coarse 12,051 20 12

Table A1: Information on ZSL datasets.

Training. The networks are trained in an iterative fash-
ion. First, all networks except the decoder are optimized.
Then the discriminator is frozen and all other networks are
optimized. We followed the optimization settings in TF-
VAEGAN. Specifically, the Adam [5] optimizer is used
with learning rate set as 1e−4 in CUB [16], 1e−5 in

AWA2 [17], 1e−3 in SUN [18] and 1e−5 in aPY [4]. For
the hyperparameters in our counterfactual-faithful training,
we used β = 6.0, ν = 1.0 for CUB, β = 6.0, ν = 1.0 for
AWA2, β = 4.0, ν = 1.0 for SUN and β = 6.0, ν = 0
for aPY. On CUB, AWA2, and SUN, we additionally used
annealing on the KL divergence loss, where β is initially set
as 0 and linearly increased to the set value over 40 epochs.

Inference. In ZSL, we train a linear classifier with one
fully-connected layer using the Adam optimizer. On CUB,
the classifier was trained for 15 epochs with learning rate
as 1e−3. On AWA2, it was trained for 3 epochs with learn-
ing rate as 1e−3. On SUN, it was trained for 6 epochs with
learning rate as 5e−4. On aPY, it was trained for 3 epochs
with learning rate as 1e−3. After training, the classifier was
used for inference following the decision rule introduced in
Section 3.3.

A.2.2. OSR

Our proposed GCM-CF is implemented based on the ar-
chitecture of CGDL [14]. Notice that the original CGDL
doesn’t distinguish sample attribute Z and class attribute Y
explicitly. To keep consistent with the ZSL model and fol-
low the common VAE-GAN architecture, here we revise the
encoder to model Z and Y respectively.

Encoder Qφ(Z|X). Given an actual image X = x, we
follow [14] to implement Qφ(Z|X) with the probabilistic
ladder architecture to extract the high-level abstract latent
features z. In detail, the l-th layer in the ladder encoder is
expressed as:

xl = Conv(xl−1)

hl = Flatten(xl)

µl = Linear(hl)

σ2
l = Softplus(Linear(hl))

where Conv is a convolutional layer followed by a batch-
norm layer and a PReLU layer, Flatten is a linear layer
to flatten 2-dimensional data into 1-dimension, Linear is
a single linear layer and Softplus applies log(1+exp(· ))
non-linearity to each component of its argument vector. The
latent representation Z = z can be obtained as:

µz,σ
2
z = LadderEncoder(x),

z = µz + σz �N (0, I),
(4)

where � is the element-wise product.

Decoder Pθ(X|Z, Y ). Given the latent sample attribute
Z = z and the class attribute Y = y, the l-th layer of



the ladder decoder is expressed as follows:

c̃l+1 = Unflatten(tl+1)

x̃l+1 = ConvT(c̃l+1)

h̃l+1 = Flatten(x̃l+1)

µ̃l = Linear(h̃l+1)

σ̃2
l = Softplus(Linear(h̃l+1))

tl = µ̃l + σ̃2
l � ε

where ConvT is a transposed convolutional layer and
Unflatten is a linear layer to convert 1-dimensional data
into 2-dimension. Note that the input t of the top decoder
layer is the concatenation of z and y. Overall, the recon-
structed image x̃ can be represented as:

x̃ = LadderDecoder(z,y). (5)

For more details please refer to [14].
Known Classifier. The known classifier is a Softmax Layer
taking the one-hot embedding y as the input and produces
the probability distribution over the known classes.
Datasets. The details of OSR datasets are given in Ta-
ble A2.

Dataset Image Size Classes Train Test
MNIST [8] 28×28 10 60,000 10,000
SVHN [11] 32×32 10 73,257 26,032
CIFAR10 [6] 32×32 10 50,000 10,000
CIFAR100 [6] 32×32 100 50,000 10,000

Table A2: Information on OSR datasets.

Training. The network is trained in an end-to-end fash-
ion. We directly follow the optimization settings and hy-
perparameters of ladder architecture in CGDL [14]. For the
hyperparameters in our counterfactual-faithful training, we
used β = 1.0, ν = 10.0 for MNIST, β = 1.0, ν = 2.0 for
SVHN, β = 6.0, ν = 1.0 for CIFAR10, β = 1.0, ν = 20.0
for CIFARAdd10, β = 1.0, ν = 1.0 for CIFARAdd50.
Note that we didn’t use the loss LF in OSR task.
Inference. When training is completed, we follow [14] to
use the reconstruction errors and a multivariate Gaussian
model to judge the unseen samples. The threshold τl is
set to 0.9 for MNIST, 0.6 for SVHN, 0.9 for CIFAR10, 0.8
for CIFARAdd10 and 0.5 for CIFARAdd50. More details
about the multivariate Gaussian model please refer to [14].

A.3. Additional Results
A.3.1. ZSL

Stage-One Binary Classifier. We extend the results in Ta-
ble 5 by showing comparison of the two-stage inference per-
formance on CUB [16], SUN [18] and aPY [4] dataset. Our
GCM-CF improves all of them and outperforms the current

Dataset CUB [16]

Stage 2

Stage 1 TF-VAEGAN [10] GCM-CF (Ours)

U S H U S H
RelationNet [15] 40.5 65.3 50.0 47.7 57.6 52.2
CADA-VAE [13] 43.2 63.4 51.4 51.4 57.6 54.3
LisGAN [9] 41.1 66.0 50.7 47.9 58.1 52.5
TF-VAEGAN [10] 50.8 64.0 56.6 55.4 60.0 57.6

Dataset SUN [18]

Stage 2

Stage 1 TF-VAEGAN [10] GCM-CF (Ours)

U S H U S H
RelationNet [15] 30.8 23.0 26.3 37.2 21.9 27.6
CADA-VAE [13] 37.6 39.3 38.4 44.6 37.6 40.8
LisGAN [9] 36.3 41.7 38.8 43.0 38.9 40.8
TF-VAEGAN [10] 41.7 39.9 40.8 47.9 37.8 42.2

Dataset aPY [4]

Stage 2

Stage 1 TF-VAEGAN [10] GCM-CF (Ours)

U S H U S H
RelationNet [15] 31.5 63.3 42.1 34.6 56.6 43.0
CADA-VAE [13] 31.1 64.8 41.9 35.0 57.2 43.5
LisGAN [9] 31.2 64.6 42.0 34.7 57.3 43.2
TF-VAEGAN [10] 33.1 64.2 43.7 37.1 56.8 44.9

Table A3: Supplementary to Table 5. Comparison of the two-stage in-
ference performance on CUB [16], SUN [18] and aPY [4] using TF-
VAEGAN [10] and our GCM-CF as the stage-one binary classifier.

Dataset Entangled Disentangled

U S H U S H
CUB [16] 71.6 15.8 25.9 61.0 59.7 60.3
AWA2 [17] 70.5 27.9 40.0 60.4 75.1 67.0
SUN [18] 62.9 17.5 27.4 47.9 37.8 42.2
aPY [4] 42.4 14.4 21.5 37.1 56.8 44.9

Table A4: Comparison of ZSL Accuracy using an entangled model without
using the proposed counterfactual-faithful training and the disentangled
model with the proposed training.

SOTA ZSL method TF-VAEGAN as a binary unseen/seen
classifier.
Effect of Disentanglement. To show that the quality of
disentangling Z and Y is the key bottleneck, we compared
an entangled model (without counterfactual-faithful train-
ing) and the disentangled model on ZSL Accuracy and the
results are shown in Table A4. Notice that the entangled
model has a much lower S. This is because the training is
conducted on the seen-classes and the encoded Z is entan-
gled with seen-classes attributes. Therefore the generated
counterfactuals are biased towards the seen-classes, i.e., the
green counterfactual samples in Figure 2c are closer to true
samples from seen-classes, pushing the classifier boundary
towards seen-classes and increasing the recall of the unseen-
class by sacrificing that of the seen.

A.3.2. OSR

5 Splits Results. In our main paper we have argued that the
common evaluation setting of averaging F1 scores over 5
random splits can result in a large variance in the F1 score.
Here we additionally report the split details in Table A5 and



the results on all splits in Tabel A6. Note that since the of-
ficial code of CGDL [14] is not complete, we implemented
the code of dataloader, computing F1 score and set part of
parameters. The 5 seeds (i.e., 5 splits) are randomly chosen
without any selection.

Split 1 (seed: 777)
Dataset Seen Unseen

MNIST 3,7,8,2,4,6 0,1,5,9
SVHN 3,7,8,2,4,6 0,1,5,9
CIFAR10 3,7,8,2,4,6 0,1,5,9
CIFARAdd10 0,1,8,9 27, 46, 98, 38, 72, 31, 36, 66, 3, 97

CIFARAdd50 0,1,8,9

27, 46, 98, 38, 72, 31, 36, 66, 3, 97,
75, 67, 42, 32, 14, 93, 6, 88, 11, 1, 44,
35, 73, 19, 18, 78, 15, 4, 50, 65, 64,

55, 30, 80, 26, 2, 7, 34, 79, 43, 74, 29,
45, 91, 37, 99, 95, 63, 24, 21

Split 2 (seed: 1234)
Dataset Seen Unseen

MNIST 7,1,0,9,4,6 2,3,5,8
SVHN 7,1,0,9,4,6 2,3,5,8
CIFAR10 7,1,0,9,4,6 2,3,5,8
CIFARAdd10 0,1,8,9 98, 46, 14, 1, 7, 73, 3, 79, 93, 11

CIFARAdd50 0,1,8,9

98, 46, 14, 1, 7, 73, 3, 79, 93, 11, 37,
29, 2, 74, 91, 77, 55, 50, 18, 80, 63,
67, 4, 45, 95, 30, 75, 97, 88, 36, 31,
27, 65, 32, 43, 72, 6, 26, 15, 42, 19,

34, 38, 66, 35, 21, 24, 99, 78, 44
Split 3 (seed: 2731)

Dataset Seen Unseen
MNIST 8,1,6,7,2,4 0,3,5,9
SVHN 8,1,6,7,2,4 0,3,5,9
CIFAR10 8,1,6,7,2,4 0,3,5,9
CIFARAdd10 0,1,8,9 79, 98, 67, 7, 77, 42, 36, 65, 26, 64

CIFARAdd50 0,1,8,9

79, 98, 67, 7, 77, 42, 36, 65, 26, 64,
66, 73, 75, 3, 32, 14, 35, 6, 24, 21, 55,
34, 30, 43, 93, 38, 19, 99, 72, 97, 78,
18, 31, 63, 29, 74, 91, 4, 27, 46, 2, 88,

45, 15, 11, 1, 95, 50, 80, 44
Split 4 (seed: 3925)

Dataset Seen Unseen
MNIST 7,3,8,4,6,1 0,2,5,9
SVHN 7,3,8,4,6,1 0,2,5,9
CIFAR10 7,3,8,4,6,1 0,2,5,9
CIFARAdd10 0,1,8,9 46, 77, 29, 24, 65, 66, 79, 21, 1, 95

CIFARAdd50 0,1,8,9

46, 77, 29, 24, 65, 66, 79, 21, 1, 95,
36, 88, 27, 99, 67, 19, 75, 42, 2, 73,

32, 98, 72, 97, 78, 11, 14, 74, 50, 37,
26, 64, 44, 30, 31, 18, 38, 4, 35, 80,
45, 63, 93, 34, 3, 43, 6, 55, 91, 15

Split 5 (seed: 5432)
Dataset Seen Unseen

MNIST 2,8,7,3,5,1 0,4,6,9
SVHN 2,8,7,3,5,1 0,4,6,9
CIFAR10 2,8,7,3,5,1 0,4,6,9
CIFARAdd10 0,1,8,9 21, 95, 64, 55, 50, 24, 93, 75, 27, 36

CIFARAdd50 0,1,8,9

21, 95, 64, 55, 50, 24, 93, 75, 27, 36,
73, 63, 19, 98, 46, 1, 15, 72, 42, 78,
77, 29, 74, 30, 14, 38, 80, 45, 4, 26,

31, 11, 97, 7, 66, 65, 99, 34, 6, 18, 44,
3, 35, 88, 43, 91, 32, 67, 37, 79

Table A5: The detailed label splits of 5 random seeds

Closed Set Results. Closed-Set Accuracy is the standard
supervised classification accuracy on the seen-classes with

Split 1
Method MNIST SVHN CIFAR10 C+10 C+50

Softmax 76.26 73.06 69.81 77.87 65.78
OpenMax [2] 83.34 75.34 71.49 78.70 67.27
CGDL [14] 91.79 77.42 70.02 78.52 72.7
GCM-CF (Ours) 94.21 79.23 73.03 80.29 74.70

Split 2
Method MNIST SVHN CIFAR10 C+10 C+50

Softmax 77.06 75.03 73.02 77.82 65.87
OpenMax [2] 86.97 77.27 73.74 79.02 67.56
CGDL [14] 86.76 73.63 73.15 76.46 70.79
GCM-CF (Ours) 91.82 80.28 75.71 79.67 74.79

Split 3
Method MNIST SVHN CIFAR10 C+10 C+50

Softmax 77.44 78.67 70.79 77.61 66.21
OpenMax [2] 83.39 80.00 72.01 78.38 67.83
CGDL [14] 92.36 77.59 74.77 77.92 71.93
GCM-CF (Ours) 93.86 80.51 75.38 79.40 76.56

Split 4
Method MNIST SVHN CIFAR10 C+10 C+50

Softmax 76.03 75.47 70.25 77.67 66.01
OpenMax [2] 87.06 76.80 70.76 78.64 68.21
CGDL [14] 90.34 73.53 70.30 78.27 71.69
GCM-CF (Ours) 91.34 80.76 71.12 78.74 74.53

Split 5
Method MNIST SVHN CIFAR10 C+10 C+50

Softmax 77.33 78.30 68.12 78.13 65.97
OpenMax [2] 89.88 80.33 68.90 78.70 67.55
CGDL [14] 83.51 79.41 66.89 78.00 68.18
GCM-CF (Ours) 92.45 80.33 69.52 78.79 72.40

Table A6: Comparison of the F1 score averaged over 5 random splits in
OSR. Note that since the official code of CGDL [14] is not complete, we
implemented the code of dataloader, F1 score and set part of parameters.
Moreover, we also implemented Softmax and OpenMax [2] for evaluation.
For GCM-CF, after binary classification, we used CGDL for supervised
classification on the seen-classes.

Method MNIST SVHN CIFAR10 C+10 C+50
Plain CNN 0.995 0.965 0.917 0.941 0.940
CGDL [14] 0.996 0.962 0.913 0.934 0.935

Table A7: Comparison of the Closed-Set accuracy in OSR.

open set detection disabled. As shown in Table A7, the net-
work were trained without any large degradation in closed
set accuracy from the plain CNN.
Effect of disentanglement. To further demonstrate the
effectiveness of disentangling Z and Y in OSR, we also
compared an entangled model (without the counterfactual-
faithful training) and the disentangled model on F1 scores.
The results are shown in Table A8. Similar to the ZSL,
we can also see the F1 scores of entangled model are much
lower than those of disentangled model. The constructed
green counterfactual samples are still closer to the unseen
sample though given the seen attributes without disentan-
glement, which demonstrate the necessity of the proposed
disentangle loss.
More Qualitative Results. Figure A1 and A2 show
the additional qualitative results comparing existing
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Figure A1: The additional qualitative results of the reconstructed images using CGDL [14] (y(X)⊕N (0, I)) and the counterfactual images generated from
our GCM-CF (y⊕ z(X)) on MNIST dataset. The red box on a generated image denotes that it is similar to the original, while the brown box represents the
failure generation.
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Figure A2: The additional qualitative results of the reconstructed images using CGDL [14] (y(X)⊕N (0, I)) and the counterfactual images generated from
our GCM-CF (y ⊕ z(X)) on SVHN dataset. The red box on a generated image denotes that it is similar to the original, while the brown box represents the
failure generation.

Model MNIST SVHN CIFAR10 C+10 C+50
Entangled 91.37 62.57 67.03 73.81 69.18
Disentangled 94.21 79.23 73.03 80.29 74.70

Table A8: Comparison of the F1 scores using entangeled and disentangled
model in OSR.

reconstruction-based approach with our proposed counter-
factual approach on MNIST and SVHN dataset. For the
Seen-class (i.e., the left part), both the baseline model and
our GCM-CF can reconstruct samples with low reconstruc-
tion error, which means both of them can handle well given
the seen-class images. When coming to the unseen-class
(i.e., the right part), the baseline method would still gen-
erate similar samples (red box), with a much lower recon-
struction error comparing to the counterfactual samples pro-
duced by GCM-CF, resulting in a failure rejection to the
unknown outlier. The brown box represents the failure re-
constructions for the baseline model (i.e., generated sample
is also dissimilar with the original input image) given some
unseen-class samples. Note that this is reasonable since the

model haven’t seen the unseen-class samples during train-
ing, which also corresponds to Figure 4b in the main paper.
In this case, our counterfactual model can still make better
generation (e.g., “3” in the last row of Figure A1).

For the CIFAR10 dataset, as dicussed in the main pa-
per, we cannot generate realistic images due to the con-
flict between visual perception and discriminative training.
Therefore, we apply a pretrained image classifier to gener-
ate CAM to reveal the sensible yet discriminating features.
Here we show the additional examples in Figure A3. The
first row is the direct image reconstruction results generated
by baseline and proposed model. The disordered appear-
ance explains that the pixel-level generation is not sensible.
However, when utilizing the tool of CAM, something mag-
ical happened. The insensible pixel-level generation be-
comes discriminative in the view of the pretrained classi-
fier. The generation samples of our proposed GCM-CF re-
veal different heat maps given different counterfactual class
conditions. Among them the heat map of “ship” condition
is quite similar to that of the reconstruction of the baseline
model (red box), showing the consistency of the CAM heat



map. Moreover, for different samples in the same class (i.e.,
the different rows), the class-specific CAM heat maps keep
stable with only minor changes. It further demonstrates that
the CAM heat map can be considered a kind of substitu-
tion of the original pixel images to reveal the discrimitative
feature.
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Figure A3: The additional qualitative results of the reconstructed images using CGDL [14] (y(X)⊕N (0, I)) and the counterfactual images generated from
our GCM-CF (y ⊕ z(X)) on CIFAR10 dataset. The red box on a generated image denotes that it is similar to the original.


