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1. Proof of Equation (13)
As mentioned in Section 3.2 of the main paper, in or-

der for the prototype-classifier learning paradigm to work
well, the network is desired to have enough confident pre-
dictions for all classes to get robust ŵs

i and ŵt
i . First, to

promote the network to have diversified outputs, we pro-
pose to maximize the entropy of expected network predic-
tion H(Ex[p(y|x; θ)]). Second, to get high-confident pre-
diction for each sample, we perform entropy minimization
on the network output. So the overall objective is:

maxH(Ex[p(y|x; θ)])− Ex[H(p(y|x; θ))]. (1)

Now we show that this objective equals maximizing the mu-
tual information between input and output, i.e. I(y;x):

H(Ex[p(y|x; θ)])− Ex[H(p(y|x; θ))] (2)
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=

∫∫
p(y,x) log
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p(y)p(x)
dy dx = I(y;x) (9)

In addition, we estimate H(Ex[p(y|x; θ)]) with∑
x∈D p(y|x; θ) log p̂0, where p̂0 is a moving average of

p(y|x; θ).

2. Additional Datasets Details

Overall statistics of the datasets and the number of la-
beled source examples used in our experiments can be
found in Table 1. For Office [10], Office-Home [12] and
VisDA [9], we follow the same setting in [3], randomly
sampling labeled images from the source domain and en-
sure that each class has at least one labeled example. For
DomainNet [8], we use the same split files as [11] and fur-
ther select 1-shot and 3-shots labeled samples in the training
set for each class.

3. Additional Implementation Details

We implemented our model in PyTorch [7]. We choose
batch size of 64 for both source and target in self-supervised
learning and batch size of 32 for the classification loss.
The learning rate ratio between linear layer and convolu-
tion layer is set to 1 : 0.1. We use SGD with weight de-
cay rate 5e−4. For Office and Office-Home, we adaptively
set temperature φ according to [4]. For VisDA and Do-
mainNet, we fix φ to be 0.1 for more stable training. We
set temperature τ to be 0.1 in all experiments. We choose
hyper-parameters λin and λcross ∈ {1, 0.5}, and the weight
λmim ∈ {0.05, 0.01}. As for parameters m (momentum
for memory bank update) and M (number of k-means in
LInSelf ), we set m = 0.5 and M = 20.

We use spherical k-means for clustering and set half of
the number of clusters in k-means to be the number of the
classes nc, and the rest to be 2nc. We compute the weight
for cosine classifier only using source images for the first 5
epochs and set tw to be around half of the average number of
images per class. New prototypes (i.e. centroids of clusters
and weights of cosine classifier) are computed per epoch for
both self-supervised learning and classification.
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Table 1: Dataset statistics and labeled source used

Dataset Domain # total image # labeled images # classes

Office [10]
Amazon (A) 2817 1-shot and 3-shots

labeled source 31DSLR (D) 498
Webcam (W) 795

Office-Home [12]

Art (Ar) 2427
3% and 6%

labeled source 65Clipart (Cl) 4365
Product (Pr) 4439
Real (Rw) 4357

VisDA [9] Synthetic (Syn) 152K 0.1% and 1%
labeled source 12Real (Rw) 55K

DomainNet [8]

Clipart (C) 18703
1-shot and 3-shots

labeled source 126Painting (P) 31502
Real (R) 70358

Sketch (S) 24582

Table 2: Accuracy of cross-domain weighted kNN with dif-
ferent SSL methods.

Method D→A Rw→Cl

ImageNet pre-train 62.5 40.6
ID [13] 70.3 51.9
CDS [3] 72.5 53.7
protoNCE [4] 72.3 49.3
LInSelf + LCrossSelf 75.5 55.3

4. Quantitative Feature Analysis

To quantitatively compare the quality of learned features
with different approaches, we perform classification with
weighted k-nearest neighbor (kNN) classifier proposed by
Wu et al. [13] in a cross-domain manner. Specifically, given
a test image xt, we first compute its normalized feature
f t = F (xt), and then compare it again embeddings of all
source images in the source memory bank V s using cosine
similarity si = cos(f t,vs

i ). The top k nearest neighbors in
the source domain,Nk, would be used to make the final pre-
diction with weighted voting. Specifically, class cwould get
weight wc =

∑
i∈Nk

αi · 1(ci = c), in which αi is the con-
tributing weight of neighbor vs

i defined as αi = exp(si/τ).
We set τ = 0.07 and k = 200 as in [13].

We perform the above cross-domain kNN classifica-
tion on models trained with 1) only cross-domain self-
supervised learning methods, and 2) Few-shot Unsuper-
vised Domain Adaptation methods, with the results shown
in Table 2 and Table 3, respectively. From the results, we

Table 3: Accuracy of cross-domain weighted kNN with dif-
ferent FUDA methods.

Method D→A (1-shot) Rw→Cl (3%)

CDS [3] 72.3 57.6
CDS + ENT 72.8 58.6
CDS + MME + ENT 60.8 59.2
PCS (Ours) 76.0 59.3

can see that both the proposed cross-domain prototypical
self-supervised learning method and the whole PCS frame-
work outperforms previous approaches.

5. Stability Analysis of PCS
To show the performance stability of PCS, we conduct

multiple runs with three different random seeds. Table 4
reports the averaged accuracy and standard deviation of the
three runs on the 1-shot and 3-shots settings of Office.

Figure 1 shows adaptation accuracy vs. training epochs
using cosine classifier (Figure 1a) and weighted kNN clas-
sifier (Figure 1b). From the plots, we have the following
observations. (1) The target accuracy of PCS increases
more steadily and robustly compared to other methods.
In Figure 1a, CDS starts decreasing at Epoch 3. In Fig-
ure 1b, CDS and CDS+ENT starts decreasing at Epoch 1;
while CDS+ENT+MME decreases from the beginning of
training. In contrast, the performance of PCS increases
smoothly until the end of training. (2) PCS converges much
faster than other methods. We can see in Figure 1a that
PCS plateaus at around Epoch 3, while CDS+ENT and
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(a) Target Acc. with cosine classifier vs. training epochs
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(b) Target Acc. with Weighted kNN vs. training epochs

Figure 1: Stability of Target Accuracy during training procedure.

Table 4: Averaged accuracy and standard deviation of PCS on three runs of 1-shot and 3-shots on Office dataset.

Labeled Source A→D A→W D→A D→W W→A W→D

1-shot 60.2±1.9 69.8±0.8 76.1±0.4 90.6±0.8 71.2±1.0 91.8±1.9
3-shots 78.2±1.8 82.9±1.1 76.4±0.5 94.1±0.1 76.3±0.7 96.0±0.7

Table 5: Sum of pair-wise cosine-similarity between proto-
types in Office and Office-Home.

Method D→A (1-shot) Rw→Pr (3%)

SO 0.44 -0.71
CDS [3] 0.43 -0.71
PCS w/o APCU -53.3 -22.8
PCS (Ours) -58.4 -26.5

CDS+ENT+MME reaches the best performance at Epoch
9 and 10.

6. Prototype Quality Comparison
To further compare how well source and target are

aligned, we provide more t-SNE [6] visualizations on Of-
fice (D→A) and Office-Home (Rw→Cl) in Figure 2a and
2b, comparing ImageNet Pre-training, CDS [3] and PCS.
Specifically, we plot representations for all samples (top in
both Figures), as well as the prototypes (normalized average
representation) for each class. In top rows of both figures,
the color of a sample represents its class, and samples from
different domains are represented by different shapes (cir-
cles for source and crosses for target, best view after zoom-
ing in). In bottom rows of both figures, the number of a pro-

totype represents its class index, and color represent the do-
main of the prototype (Cyan for source, Red for target, and
Black for prototype weight of the classifier). As we can see
from Figure 2, for each class, the prototypes of source, tar-
get and the weight vector of classifier get more aggregated
with PCS than other methods, which demonstrates that PCS
could better align source and target representations for each
category.

In a well-learned feature embedding space, prototypes
of different classes should be far / different from each other.
To quantitatively measure the similarity of the learned pro-
totypes, we compute the sum of cosine similarities between
all pairs of prototypes. From the results shown in Table 5,
we can see that the prototypes learned with PCS have the
least similarities, indicating that PCS learns an embedding
space with better semantic structure.

7. Image Retrieval Results

We present cross-domain image retrieval results in Fig-
ure 3. Given a query feature fq in the target domain, we
measure the pairwise cosine similarity between fq and all
features in the source domain. The source images with
the most similar features as fq are returned as the top re-
trieval results. We compare image retrieval results of PCS
with CDS in Figure 3. As shown in Figure 3, features
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PCS (Ours)CDSImageNet Pre-trained

(a) Office (D→A with 1-shot labeled source per class)

PCS (Ours)CDSImageNet Pre-trained

(b) Office-Home (Rw→Cl with 3% labeled source per class)

Figure 2: t-SNE visualization of ours and baselines on Office (a) and Office-Home (b). Top row: Coloring represents the
class of each sample, and shape represents domain (circle for source and cross for target). Features with PCS are more
discriminative than the ones with other methods. Bottom row: each number represents a centroid for corresponding class.
Cyan represents centroids of source images based on ground truth and Red for target. Black represents prototypes of the
classifier. Centroids from PCS are better-aligned between domains compared to other methods. (Zoom in for more details).

from model trained with CDS are biased to some wrong at-
tributes, e.g. color, texture and other visual clues; and quan-
titatively similar features do not correspond to semantically
similar images in different domains. In contrast, we can see
that PCS could extract features that are more discriminative
and semantically meaningful across domains.

8. Performance Comparison with UDA Meth-
ods using Full Source Labels

We have shown the superiority of PCS in label-scarce
setting (FUDA), and we further conduct experiments with
fully-labeled source domain (UDA). The performance com-
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Query (Target) Retrievals (Source)
(a) CDS (b) PCS (Ours)

Figure 3: Image retrieval examples of the closest cross-domain neighbors using CDS (a) and PCS (b) in Office-Home (Target:
Real, Source: Art).

Table 6: Adaptation accuracy (%) comparison on fully-labeled setting on the Office-Home dataset.

Method Ar→Cl Ar→Pr Ar→Rw Cl→Ar Cl→Pr Cl→Rw Pr→Ar Pr→Cl Pr→Rw Rw→Ar Rw→Cl Rw→Pr Avg

SO 34.9 50.0 58.0 37.4 41.9 46.2 38.5 31.2 60.4 53.9 41.2 59.9 46.1
DANN [1] 45.6 59.3 70.1 47.0 58.5 60.9 46.1 43.7 68.5 63.2 51.8 76.8 57.6
CDAN [5] 50.7 70.6 76.0 57.6 70.0 70.0 57.4 50.9 77.3 70.9 56.7 81.6 65.8
MMDIA [2] 56.2 77.9 79.2 64.4 73.1 74.4 64.2 54.2 79.9 71.2 58.1 83.1 69.5
MME [11] 54.2 72.8 78.3 57.9 70.2 71.8 58.5 52.9 77.9 72.7 58.1 81.8 67.3
CDS / MME [3] 56.9 73.3 76.5 62.8 73.1 71.1 63.0 57.9 79.4 72.5 62.5 83.0 69.3
PCS (Ours) 55.8 76.9 80.3 67.9 74.0 75.7 67.0 52.9 81.0 74.5 58.3 82.8 70.6

Table 7: Adaptation accuracy (%) comparison on fully-
labeled setting on the Office dataset.

Method A→D A→W D→A D→W W→A W→D Avg

SO 68.9 68.4 62.5 96.7 60.7 99.3 76.1
DANN [1] 79.7 82 68.2 96.9 67.4 99.1 82.2
CDAN [5] 92.9 94.1 71 98.6 69.3 100 87.7
MMDIA [2] 92.1 90.3 75.3 98.7 74.9 99.8 88.8
MME [11] 88.8 87.3 69.2 98.7 65.6 100 84.9
CDS + MME [3] 86.9 88.3 75.9 98.6 73.3 100 87.1
PCS (Ours) 94.6 92.1 77.4 97.7 77.0 99.8 89.8

parison with other UDA methods on Office and Office-
Home are presented in Table 7 and Table 6, respectively.
We can see that PCS achieves the best results even with

fully-labeled source, which demonstrates that the proposed
PCS could potentially be applied to a wider range of domain
adaptation settings.

9. More Ablation Study Results

In this section, we provide more ablation study results.
Ablation experiments similar to Table 2 in the main pa-
per are performed on Office-Home, with results shown in
Table 8. As we can see in the table, adding each compo-
nent contributes to the final adaptation accuracy without any
performance degradation, which demonstrates the effective-
ness of all components in our PCS framework.
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Table 8: Performance contribution of each part in PCS framework on Office-Home.

Method Office-Home: Target Acc.

Ar→Cl Ar→Pr Ar→Rw Cl→Ar Cl→Pr Cl→Rw Pr→Ar Pr→Cl Pr→Rw Rw→Ar Rw→Cl Rw→Pr Avg

3% labeled source

Lcls 24.4 38.3 43.1 26.4 34.7 33.7 27.5 26.5 42.6 41.2 29.0 52.3 35.0
+LInSelf 34.6 48.3 54.7 49.2 53.1 57.1 48.2 40.6 62.9 57.9 44.9 68.8 51.7
+LCrossSelf 36.5 53.7 56.6 51.2 57.9 58.8 51.2 42.8 66.2 61.5 50.1 72.2 54.9
+LMIM 37.2 55.9 58.8 51.5 59.4 59.0 53.2 43.0 68.2 62.0 50.2 72.5 55.9
+APCU (PCS) 42.1 61.5 63.9 52.3 61.5 61.4 58.0 47.6 73.9 66.0 52.5 75.6 59.7

6% labeled source

Lcls 28.7 45.7 51.2 31.9 39.8 44.1 37.6 30.8 54.6 49.9 36.0 61.8 42.7
+LInSelf 40.8 57.6 65.5 54.5 62.4 62.7 54.6 43.1 73.6 64.2 44.7 75.9 58.3
+LCrossSelf 40.8 59.5 66.9 55.5 64.1 63.1 57.2 46.2 73.9 65.0 52.0 76.9 60.1
+LMIM 42.1 60.2 68.5 55.9 64.4 63.5 59.1 47.1 74.4 66.6 52.1 77.0 60.9
+APCU (PCS) 46.1 65.7 69.2 57.1 64.7 66.2 61.4 47.9 75.2 67.0 53.9 76.6 62.6
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