
Supplementary Material of “Semi-Supervised Video Deraining with Dynamical
Rain Generator”

Zongsheng Yue1, Jianwen Xie2, Qian Zhao1, Deyu Meng1,3,*

1Xi’an Jiaotong University, Xi’an, China
2Cognitive Computing Lab, Baidu Research, Bellevue, USA

3The Macau University of Science and Technology, Macau, China
zsyzam@gmail.com, jianwen@ucla.edu, timmy.zhaoqian@gmail.com, dymeng@mail.xjtu.edu.cn

https://github.com/zsyOAOA/S2VD

Abstract

In this supplementary material, we provide more details
on how to apply the proposed dynamic rain generator to
synthesize new rainy videos that look similar to any ob-
served video, which only contains the rain layer. Rain gen-
eration experiments are also conducted to evaluate its effec-
tiveness. Besides, more analysis about the model capacity
and running time of our method are also presented to verify
its superiority.

1. Dynamical Rain Generator
In Sec. 3.1 of the main text, we design the following dy-

namical rain generator, i.e.,

st = F (st−1, zt;α), (1)
Rt = H(st;β), (2)

where
zt ∼ N (0, I), s0 ∼ N (0, I). (3)

The detailed explanations about Eqs. (1)-(3) can be seen in
the main text. By denoting z = {zt}nt=1 and θ = {α,β},
Eqs. (1) and (2) can be simply written together as follows,

R = G(s0, z;θ). (4)

1.1. Maximum Likelihood Estimation

Given any observed video Ro purely containing rain
layer, we assume that it is generated by the aforementioned
generator with an additional residual term E , i.e.,

Ro = G(s0, z;θ) + E ,
Eijt ∼ N (0, σ2), (5)

*Corresponding author.

Algorithm 1 Inference and learning procedure for the dy-
namic rain generator
Input: Observe dataRo, number of Langevin steps l.
Output: the generator parameters θ.
1: Initialize θ.
2: while not converged do
3: E-Step: Run l steps of Langevin dynamics to sample

z following Eq. (7).
4: M-Step: Update θ by gradient descent in Eq. (10).
5: end while

where Eijt denotes the element with index (i, j, t) in E .
According to Eq. (5), our goal turns to maximize the log-

likelihood p(Ro;θ) w.r.t. the parameters θ, i.e.,

max
θ

log p(Ro;θ) = log

∫
p(Ro|z)p(z) dz

= log

∫
N (G(s0, z;θ) , σ

2I)p(z) dz

, L(Ro;θ), (6)

where p(z) is defined in Eq. (3).

1.2. Inference and Learning Algorithm

Inspired by the technology of alternative back-
propagation through time [6], a Monte Carlo-based EM [2]
algorithm is designed to learn the model parameter θ by
solving the problem of Eq. (6), which consists of two alter-
native steps, i.e., one expectation step and one maximization
step. The expectation step aims to sample latent variable z
from the posterior p(z|Ro), while the maximization step
updates the parameters θ based on the current sampled z.
E-Step: Let θold and pold(z|Ro) denote the current pa-
rameters θ and the corresponding posterior distribution, we
can sample z from pold(z|Ro) using the Langevin dynam-

ics [3]:

z(τ+1) = z(τ) +
δ2

2

[
∂

∂z
log pold(z|Ro)

] ∣∣∣∣
z=z(τ)

+ δξ(τ)

= z(τ) − δ2

2

[
∂

∂z
g(z)

] ∣∣∣∣
z=z(τ)

+ δξ(τ), (7)

where

g(z) =
1

2σ2

∥∥∥Ro −G(
z, s0;θ

old
)∥∥∥

2
+

1

2
‖z‖2, (8)

τ indexs the time step for Langevin dynamics, δ denotes the
Langevin step size. And ξ(τ) is the Gaussian white noise,
which is added to prevent trapping into local modes. A key
point in Eq. (7) is ∂

∂z log pold(z|Ro) = ∂
∂z log pold(Ro, z),

and the right term can be easily calculated.
In practice, for the purpose of avoiding high computa-

tional cost of MCMC, Eq. (7) is initizlized with the previous
updated result of z at each iteration. As for the initialized
state vector s0 of Eq. (5), we also sample it together with z
using the Langevin dynamics.
M-Step: Denote the sampled latent variable in E-Step as
z̃, M-Step aims to maximize the approximate upper bound
w.r.t. parameters θ as follows:

max
θ
Q(θ) =

∫
pold(z|R) log p(Ro, z;θ) dz

≈ log p(Ro, z̃;θ). (9)

Equivalently, Eq. (9) can be further rewritten as the follow-
ing minimization problem, i.e.,

min
θ
L̂(θ) = 1

2σ2
‖Ro −G (z̃, s0;θ)‖2 .

Naturally, we can update θ by gradient descent based on the
back-propagation (BP) algorithm [5] as follows,

θ ← θ − η ∂
∂θ
L̂(θ), (10)

where η denotes the step size. A detailed description of our
entire algorithm is presented in Algorithm 1.

2. Rain Generation Experiments
2.1. Evaluation on Rain Generation Task

Given any video purely containing a rain layer, the pro-
posed dynamic rain generator is able to learn the under-
lying dynamics of rains from the video. After that, with
the trained generator, we can not only recover the original
rain video but also generate many new realistic rain layers.
To verify this point, one rain layer video synthesized by
the commercial Adobe After Effects1 is downloaded from

1https://www.adobe.com/products/aftereffects.html

Temporal Dimension (Frames)

Training Process
Source Video

Figure 1. An illustation of the source and recovered rain videos.
From top to bottom: the 1st row is the source rain video, and the
2-4th rows are the recovered ones by our learned dynamic rain
generator after 3, 10 and 20 iterations. From left to right, 5 adja-
cent image frames in each video are displayed.

Temporal Deimension (Frames)

Sy
n1

Sy
n2

Figure 2. Two typical examples of generated rain videos by the
learned dynamic rain generator are shown, and each row corre-
sponds to a different initialization of s0 and {zt}.

YouTube as a source video. We learn a dynamic rain gener-
ator from this video, and the visualization of recovered rain
video by our generator at different iterations are displayed
in Fig. 1. It can be seen that our generator can quickly re-
cover the rain layers of all image frames in the video only
with 20 iterations, which demonstrates its representation
power in this task.

Additionally, two synthesized rain videos by the learned
generator are shown in Fig. 2. To generate such videos, we
only need to randomly initialize the state variable s0 and the
innovation vectors {zt} in Eq. (1) from Gaussian distribu-
tion, and then follow Eqs. (1) and (2) to output a sequence
of image frames. The vivid rain videos shown in Fig. 2 in-
dicate that our generator indeed captures the intrinsic gener-
ative laws underlying the source video. Therefore, it can be
used to represent the rain layers in our proposed deraining
framework presented in Sec. 3.1 of the main text.

2.2. User Study

While we have displayed the synthesized rain layers by
our dynamic generator in Fig. 2, now a user study is further
conducted to quantitatively evaluate their realism. Three
currently widely-used benchmark data sets are considered
as compared methods, including RainSynComplex25 [4],
RainSynLigh25 [4] and NTURain [1]. The rain layers of

2

Table 1. Quantitative results of user study experiments on different rain video clips.
Metrics Methods

RainSynComplex25 RainSynLigh25 NTURain Adobe Ours
Rating↑ 1.30± 0.66 2.72± 0.98 3.49± 1.02 4.02± 0.84 4.04± 0.82

Realism↑ 26.04 54.34 69.81 80.38 80.75

Table 2. A comparison of the number of model parameters (K) and
running time (s) among different methods.

Metrics Methods
DDN PReNet SpacCNN SLDNet S2VD

Parameters (K) 57 169 477 166302 525
Time (s) 0.035 0.187 3.632 2.268 0.032

0

10

20

30

40

50

55
Strongly Disagree Disagree Neutral Agree Strongly Agree

RainSynLight25RainSynComplex25 NTURain Adobe Ours

7

42

3
1 1

12

16

19

5

10

16

18

8

1

17

22

12

2

16

26

8

3

Figure 3. User study of rain realism. The y-axis represents the
rating of the statement Rain in the video clip looks realistic. Our
generated rain layers are even a little bit better than those of the
commercial Adobe After Effects.

them are obtained as follows,

R = maxc(Y − X), (11)

where Y and X denote the rainy video and the corre-
sponding clean video, respectively, maxc(·) is the element-
wise maximization operation along the channel dimension
(RGB). Besides, since our generator is trained on one
source video downloaded from YouTube, which is produced
by the commercial Adobe After Effects2, thus we also re-
gard it as one compared method.

For visual comparisons, some typical image frames of
these four rain videos and the synthesized rain video by our
generator are shown in Fig. 4. To evaluate their realism,
we present these five video clips in a random order, each
with 100 continuous frames, to 53 recruited participants,
and then ask each of them to rate how real every video clip
is, using a 5-point Likert scale. Therefore, we finally get 53
ratings for each video clips as shown in Fig. 3. And the cor-
responding mean ratings and realism scores are list in Ta-
ble 1, in which the realism scores are calculated by convert-
ing the ratings to the range [0,1]. It can be easily seen that

2https://www.adobe.com/products/aftereffects.
html

the video clips generated by our proposed generator achieve
the best results, even a little bit better than that of the com-
mercial Adobe After Effects software, which indicates the
effectiveness of our dynamic rain generator. Therefore, it is
promising and reasonable to use this dynamic generator to
fit the rain layers in our proposed video deraining method
of the main text.

3. Model capacity and running time of S2VD

In this part, we compare the model capacity (number
of model parameters) and running time of different deep
learning (DL)-based methods. For the number of parame-
ters of the proposed S2VD, we only consider the parame-
ters in the derainer f(·;W), since only the derainer is de-
sired in the testing phase after training. The running time
evaluation was performed on a computer with 6-cores In-
ter(R) Core(TM) i7-8700K CPU (3.3GHz) and a Nvidia
GTX 1080Ti GPU. Specifically, it is tested on a rainy video
that contains 60 image frames with spatial size 480 × 640
pixels, and the average time on each frame is regarded as
the running time for each method. And the time for data
transfer between CPU and GPU is not counted during cal-
culation.

The results are listed in Table 2. We observe that: 1) On
the whole, the video deraining methods have more param-
eters than the single image deraining methods. Comparing
with two state-of-the-art video deraining methods, the num-
ber of parameters of our S2VD is very close to SpacCNN
and about 300 times smaller than SLDNet. 2) As for the
running time, our S2VD is at least 70 times faster than SLD-
Net and SpacCNN, which is mainly because our model uses
a simple architecture for the derainer network. Considering
the superiorities in both model capacity and running time,
S2VD is very competitive and appealing for real applica-
tions.

References
[1] Jie Chen, Cheen-Hau Tan, Junhui Hou, Lap-Pui Chau, and He

Li. Robust video content alignment and compensation for rain
removal in a cnn framework. In Proceedings of the IEEE Con-
ference on Computer Vision and Pattern Recognition (CVPR),
pages 6286–6295, 2018. 2

[2] Arthur P Dempster, Nan M Laird, and Donald B Rubin. Max-
imum likelihood from incomplete data via the em algorithm.
Journal of the Royal Statistical Society: Series B (Method-
ological), 39(1):1–22, 1977. 1

[3] Paul Langevin. On the theory of brownian motion. 1983. 2

3

Temporal Deimension (Frames)

R
ai
nS
yn
Li
gh
t2
5

N
T
U
R
ai
n

A
do
be

O
ur
s

R
ai
nS
yn
C
om
pl
ex
25

Figure 4. Visualization of the rain layers in different data sets. From top to bottom: the rain layers contained in RainSynComplex25,
RainSynLigh25 and NTURain, the rain layers generated by Adobe After Effects and our trained dynamic rain generator.

[4] Jiaying Liu, Wenhan Yang, Shuai Yang, and Zongming Guo.
Erase or fill? deep joint recurrent rain removal and recon-
struction in videos. In Proceedings of the IEEE Conference
on Computer Vision and Pattern Recognition (CVPR), pages
3233–3242, 2018. 2

[5] David E Rumelhart, Geoffrey E Hinton, and Ronald J
Williams. Learning representations by back-propagating er-
rors. nature, 323(6088):533–536, 1986. 2

[6] Jianwen Xie, Ruiqi Gao, Zilong Zheng, Song-Chun Zhu, and
Ying Nian Wu. Learning dynamic generator model by al-
ternating back-propagation through time. In Proceedings of
the AAAI Conference on Artificial Intelligence (AAAI), vol-
ume 33, pages 5498–5507, 2019. 1

4

