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Appendix A.

A.1 Proof of Theorem 1

Theorem 1. Let pd(x) and pg(x) be the density functions for the data and model distributions, Pd and Pg, respectively.
Consider Law(D, pg) = wrEx∼pd

[
logD(x)

]
+ wfEx∼pg

[
log(1−D(x))

]
with fixed wr, wf > 0.

1. Given a fixed pg(x), Law(D, pg) is maximized by D∗(x) = wrpd(x)
wrpd(x)+wfpg(x)

for x ∈ supp(pd) ∪ supp(pg).

2. minpg maxD Law(D, pg) = wr log
wr

wr+wf
+ wf log

wf

wr+wf
with the minimum attained by pg(x) = pd(x).

Proof.

1. First, the function f(t) = a log t + b log(1 − t) has its maximum in [0, 1] at t = a
a+b . Given a fixed pg(x), wr > 0 and

wf > 0.

Law(D, pg) = wrEx∼pd
[log (D(x))] + wfEx∼pg [log (1−D(x))] (8)

=

∫
x

wrpd(x) log (D(x)) + wfpg(x) log (1−D(x)) dx (9)

≤
∫
x

wrpd(x) log (D
∗(x)) + wfpg(x) log (1−D∗(x)) dx (10)

= wrEx∼pd

[
log

(
wrpd(x)

wrpd(x) + wfpg(x)

)]
+ wfEx∼pg

[
log

(
wfpg(x)

wrpd(x) + wfpg(x)

)]
. (11)

where the equality holds if D(x) = D∗(x). Therefore, Law(D, pg) is maximum when D = D∗.

2. If pg(x) = pd(x), then D∗(x) = wr

wr+wf
and

max
D
Law(D, pg) = wrEx∼pd

[
log

(
wr

wr + wf

)]
+ wfEx∼pg

[
log

(
wf

wr + wf

)]
(12)

= wr log

(
wr

wr + wf

)
+ wf log

(
wf

wr + wf

)
. (13)

On the other hand,

max
D
Law(D, pg) = wrEx∼pd

[
log

(
wrpd(x)

wrpd(x) + wfpg(x)

)]
+ wfEx∼pg log

[(
wfpg(x)

wrpd(x) + wfpg(x)

)]
(14)

= wr log

(
wr

wr + wf

)
+ wf log

(
wf

wr + wf

)
+ wrKL

(
pd

∣∣∣∣wrpd + wfpg
wr + wf

)
+ wfKL

(
pg

∣∣∣∣wrpd + wfpg
wr + wf

)
(15)

≥ wr log

(
wr

wr + wf

)
+ wf log

(
wf

wr + wf

)
, (16)

where KL is the Kullback-Leibler divergence and equality holds when pd =
wrpd+wfpg

wr+wf
and pg =

wrpd+wfpg

wr+wf
. Thus we

have shown that

min
pg

max
D
Law(D, pg) = wr log

(
wr

wr + wf

)
+ wf log

(
wf

wr + wf

)
. (17)

and minimum is attained when pg = pd.



A.2 Proof of Theorem 2

Theorem 2. Consider Law
D in (2) and the gradient∇Law

D .

1. If wr = 1
‖∇Lr‖2

and wf = 1
‖∇Lf‖2

, then∇Law
D is the angle bisector of ∇Lr and∇Lf , i.e.

∠2 (∇Law
D ,∇Lr) = ∠2 (∇Law

D ,∇Lf ) = ∠2 (∇Lr,∇Lf ) /2. (18)

2. If wr = 1
‖∇Lr‖2

and wf = − 〈∇Lr,∇Lf 〉2
‖∇Lf‖22·‖∇Lr‖2

, then

∠2 (∇Law
D ,∇Lf ) = 90◦, ∠2 (∇Law

D ,∇Lr) ≤ 90◦. (19)

3. If wr = − 〈∇Lr,∇Lf 〉2
‖∇Lr‖22·‖∇Lf‖2

and wf = 1
‖∇Lf‖2

, then

∠2 (Law
D ,∇Lr) = 90◦, ∠2 (∇Law

D ,∇Lf ) ≤ 90◦. (20)

Proof.

1. If wr = 1
‖∇Lr‖2

and wf = 1
‖∇Lf‖2

, then

Law
D =

1

‖∇Lr‖2
Lr +

1

‖∇Lf‖2
Lf . (21)

Using the definition of Euclidean inner product,

cos (∠2 (∇Law
D ,∇Lr)) =

〈∇Law
D ,∇Lr〉2

‖∇Law
D ‖2 ‖∇Lr‖2

(22)

=

1
‖∇Lr‖2

〈∇Lr,∇Lr〉2 + 1
‖∇Lf‖2

〈∇Lf ,∇Lr〉2
‖∇Law

D ‖2 ‖∇Lr‖2
(23)

=
1

‖∇Law
D ‖2

+
〈∇Lr,∇Lf 〉2

‖∇Law
D ‖2 ‖∇Lr‖2 ‖∇Lf‖2

(24)

cos (∠2 (∇Law
D ,∇Lf )) =

〈∇Law
D ,∇Lf 〉2

‖∇Law
D ‖2 ‖∇Lf‖2

(25)

=

1
‖∇Lr‖2

〈∇Lr,∇Lf 〉2 + 1
‖∇Lf‖2

〈∇Lf ,∇Lf 〉2
‖∇Law

D ‖2 ‖∇Lf‖2
(26)

=
1

‖∇Law
D ‖2

+
〈∇Lr,∇Lf 〉2

‖∇Law
D ‖2 ‖∇Lr‖2 ‖∇Lf‖2

(27)

We can rewrite ‖∇Law
D ‖2 in term of ∠2 (∇Lr,∇Lf ), that is

‖∇Law
D ‖22 = 〈∇Law

D ,∇Law
D 〉2

=

〈
1

‖∇Lr‖2
∇Lr +

1

‖∇Lf‖2
∇Lf ,

1

‖∇Lr‖2
∇Lr +

1

‖∇Lf‖2
∇Lf

〉
2

=
〈∇Lr,∇Lr〉2
‖∇Lr‖22

+
〈∇Lf ,∇Lf 〉2
‖∇Lf‖22

+
2 〈∇Lr,∇Lf 〉2
‖∇Lr‖2 ‖∇Lf‖2

= 2 (1 + cos (∠2 (∇Lr,∇Lf ))) . (28)

Notice that (24) can be rewritten using ∠2 (∇Lr,∇Lf ) as

cos (∠2 (∇Law
D ,∇Lr)) =

1

‖∇Law
D ‖2

+
〈∇Lr,∇Lf 〉2

‖∇Law
D ‖2 ‖∇Lr‖2 ‖∇Lf‖2

(29)



=
1

‖∇Law
D ‖2

(1 + cos (∠2 (∇Lr,∇Lf ))) (30)

=

√
1 + cos (∠2 (∇Lr,∇Lf ))

2
(31)

= cos (∠2 (∇Lr,∇Lf ) /2) . (32)

Thus, ∠2 (∇Law
D ,∇Lr) = ∠2 (∇Law

D ,∇Lf ) = ∠2 (∇Lr,∇Lf ) /2.

2. If wr = 1
‖∇Lr‖2

and wf = − 〈∇Lr,∇Lf 〉2
‖∇Lf‖22‖∇Lr‖2

then

Law
D =

1

‖∇Lr‖2
Lr −

〈∇Lr,∇Lf 〉2
‖∇Lf‖22 ‖∇Lr‖2

Lf . (33)

Using this aw-loss function, we have

〈∇Law
D ,∇Lf 〉2 =

〈
1

‖∇Lr‖2
∇Lr −

〈∇Lr,∇Lf 〉2
‖∇Lf‖22 ‖∇Lr‖2

∇Lf ,∇Lf

〉
2

(34)

=
〈∇Lr,∇Lf 〉2
‖∇Lr‖2

− 〈∇Lr,∇Lf 〉2 〈∇Lf ,∇Lf 〉2
‖∇Lf‖22 ‖∇Lr‖2

(35)

=
〈∇Lr,∇Lf 〉2
‖∇Lr‖2

− 〈∇Lr,∇Lf 〉2
‖∇Lr‖2

= 0, (36)

and

〈∇Law
D ,∇Lr〉2 =

〈
1

‖∇Lr‖2
∇Lr −

〈∇Lr,∇Lf 〉2
‖∇Lf‖22 ‖∇Lr‖2

∇Lf ,∇Lr

〉
2

(37)

=
‖∇Lr‖22
‖∇Lr‖2

− 〈∇Lr,∇Lf 〉22
‖∇Lf‖22 ‖∇Lr‖2

(38)

≥ ‖∇Lr‖2 −
‖∇Lf‖22 ‖∇Lr‖22
‖∇Lf‖22 ‖∇Lr‖2

(39)

= ‖∇Lr‖2 − ‖∇Lr‖2 = 0. (40)

Thus, ∠2 (∇Law
D ,∇Lf ) = 90◦ and ∠2 (∇Law

D ,∇Lr) ≤ 90◦.

3. If wr = − 〈∇Lr,∇Lf 〉2
‖∇Lr‖22·‖∇Lf‖2

and wf = 1
‖∇Lf‖2

then

Law
D = − 〈∇Lr,∇Lf 〉2

‖∇Lr‖22 · ‖∇Lf‖2
Lr +

1

‖∇Lf‖2
Lf , (41)

and similar argument as above proves that ∠2 (∇Law
D ,∇Lr) = 90◦ and ∠2 (∇Law

D ,∇Lf ) ≤ 90◦.



Appendix B.

B.1 Ablation study of α1 and α2 parameters

Figure 7: Top-left: IS grid after the first epoch; Bottom-left: IS grid after the fifth epoch; Top-right: FID grid after the first
epoch; Bottom-right: FID grid after the fifth epoch.

We have considered the choice of α1 and α2 by experimenting with aw-AutoGAN models on the CIFAR-10 dataset. We
recorded IS and FID scores after the first and the fifth epochs where the models were trained with the parameters in the grids
shown in Figure 7 with all other settings fixed. We present the IS and FID scores in heat map plots in Figure 7. The results
show that neighbors around the point (0.5, 0.75) lead to good scores; the point (0.5, 0.75) itself produces one of the highest
IS and one of the lowest FID. In particular, the performance is not too sensitive to the selections.

B.2 Dataset and Implementation Details

We test our aw-method on the following datasets:

• The CIFAR-10 dataset [25] consists of 60,000 color images with 50,000 for training and 10,000 for testing. All images
have resolution 32× 32 pixels and are divided equally into 10 classes, with 6,000 images per class. No data augmentation;

• The STL-10 is a dataset proposed in [10] and designed for image recognition and unsupervised learning. STL-10 consists
of 100,000 unlabeled images with 96×96 pixels and split into 10 classes. All images are resized to 48×48 pixels, without
any other data augmentation;

• The CIFAR-100 from [25] is a dataset similar to CIFAR-10 that consists of 60,000 color 32 × 32 pixel images that are
divided into 100 classes. No data augmentation.



We follow the original implementations of SN-GAN, AutoGAN and BigGAN-PyTorch [4] that use the following hyper-
parameters:

• Generator: learning rate: 0.0002; batch size: 128 (SN-GAN, AutoGAN) and 50 (BigGAN); optimizer: Adam optimizer
with β1 = 0 and β2 = 0.999 [24]; loss: hinge [28, 43]; spectral normalization: False; learning rate decay: linear; # of
training epochs: 320 (SN-GAN), 300 (AutoGAN) and 1000 (BigGAN);

• Discriminator: learning rate: 0.0002; batch size: 64 (SN-GAN, AutoGAN) and 50 (BigGAN); optimizer: Adam optimizer
with β1 = 0 and β2 = 0.999; loss: hinge; spectral normalization: True; learning rate decay: linear; training iterations ratio:
3 (SN-GAN) and 2 (AutoGAN, BigGAN).

Experiments based on SN-GAN and AutoGAN models are performed on a single NVIDIAr QUADROr P5000 GPU
running Python 3.6.9 with PyTorch v1.1.0 for AutoGAN based models and Chainner v4.5.0 for SN-GAN based models.
Experiments based on BigGAN-Pytorch [4] model are performed on two NVIDIAr Teslar V100 GPU running Python
3.6.12 with PyTorch v1.4.0.

B.3 Aw-method with non-normalized gradients

In section 3, we introduced Algorithm 1 which was developed using Theorem 2 where the weights wr and wf include
normalization of the gradients ∇Lr and ∇Lf . This is not necessary and we can consider using non-normalized gradients
directly where one of the weights is chosen as 1. The corresponding results are stated as the following theorem.

Theorem 3. Consider Law
D in (2) and the gradient∇Law

D .

1. If wr = 1 and wf = − 〈∇Lr,∇Lf 〉2
‖∇Lf‖22

, then

∠2 (∇Law
D ,∇Lf ) = 90◦, ∠2 (∇Law

D ,∇Lr) ≤ 90◦. (42)

2. If wr = − 〈∇Lr,∇Lf 〉2
‖∇Lr‖22

and wf = 1, then

∠2 (Law
D ,∇Lr) = 90◦, ∠2 (∇Law

D ,∇Lf ) ≤ 90◦. (43)

Proof. Identical to the proof of Theorem 2.

Similar to section 3, we have developed Algorithm 2 using Theorem 3. The key difference between Algorithms 1 and 2 is
normalization of the gradients; the rest of the algorithm is unchanged including the values for α1 = 0.5, α2 = 0.75, ε = 0.05
and δ = 0.05.

Similar to Section 4, we tested Algorithm 2 on unconditional and conditional image generating tasks, with results provided
in Tables 5 and 6, respectively. The implementation details are the same as in Section 4.

For the unconditional GAN, we tested our non-normalized aw-method on SN-GAN and AutoGAN baselines on three
datasets: CIFAR-10, STL-10, and CIFAR-100. Our non-normalized methods also significantly improve SN-GAN baseline, in
particular achieving the highest IS for the STL-10 dataset among comparisons in Table 2, and aw-AutoGAN non-normalized
models improve the baseline AutoGAN models as well on all the datasets.

For the conditional GAN, we tested our non-normalized aw-method on SN-GAN and BigGAN models as baselines on
CIFAR-10 and CIFAR-100 datasets. Both non-normalized aw-SN-GAN and aw-BigGAN significantly improve baseline
models for both datasets.

On average, normalized weights achieve better results than non-normalized ones. We advocate the normalized version
(Algorithm 1), but both produce quite competitive results and should be considered in implementations.



Algorithm 2: Adaptive weighted discriminator method w/o normalization for one step of discriminator training.

1: Given: Pd and Pg - data and model distributions;
2: Given: α1 = 0.5, α2 = 0.75, ε = 0.05, δ = 0.05;
3: Sample: x1, . . . , xn ∼ Pd and y1, . . . , yn ∼ Pg;
4: Compute: ∇Lr,∇Lf , sr = 1

n

∑n
i=1 σ(D(xi)), sf = 1

n

∑n
j=1 σ(D(yj));

5: if sr < sf − δ or sr < α1 then
6: if ∠2 (∇Lr,∇Lf ) > 90◦ then
7: wr = 1 + ε; wf = − 〈∇Lr,∇Lf 〉2

‖∇Lf‖22
+ ε;

8: else
9: wr = 1 + ε; wf = ε;

10: end
11: else if sr > sf − δ and sr > α2 then
12: if ∠2 (∇Lr,∇Lf ) > 90◦ then
13: wr = − 〈∇Lr,∇Lf 〉2

‖∇Lr‖22
+ ε; wf = 1 + ε;

14: else
15: wr = ε; wf = 1 + ε;
16: end
17: else
18: wr = 1 + ε; wf = 1 + ε;
19: end

CIFAR-10 STL-10 CIFAR-100
Method IS ↑ FID ↓ IS ↑ FID ↓ IS ↑ FID ↓
SN-GAN [34] 8.22±.05 21.7 9.10±.04 40.10 8.18±.12∗ 22.40∗

aw-SN-GAN (Ours) 8.53±.11 12.32 9.53±.10 36.41 8.31±.02 19.08
aw-SN-GAN (non-norm.; Ours) 8.43±.07 12.65 9.61±.12 34.72 8.30±.11 19.48
AutoGAN [14] 8.55±.10 12.42 9.16±.12 31.01 8.54±.10∗ 19.98∗

aw-AutoGAN (Ours) 9.01±.03 11.82 9.41±.09 26.32 8.90±.06 19.00
aw-AutoGAN (non-norm.; Ours) 8.98±.06 13.17 9.59±.14 27.97 8.72±.05 19.89

Table 5: Unconditional GAN: CIFAR-10, STL-10, and CIFAR-100 scores for the normalized (Algorithm 1) and non-
normalized (Algorithm 2) versions of aw-method; ∗ - results from our test.

CIFAR-10 CIFAR-100
Method IS ↑ FID ↓ IS ↑ FID ↓
SN-GAN (cond.) [34] 8.60±.08 17.5 9.30† 15.6†

aw-SN-GAN (cond.; Ours) 9.03±.11 8.11 9.48±.13 14.42
aw-SN-GAN (non-norm.; cond.; Ours) 9.00±.12 8.03 9.44±.16 14.00
BigGAN [5] 9.22 14.73 10.99±.14∗ 11.73∗

aw-BigGAN (cond.; Ours) 9.52±.10 7.03 11.22±.17 10.23
aw-BigGAN (non-norm.; cond.; Ours) 9.50±.07 6.89 11.26±.20 10.25

Table 6: Conditional GAN: CIFAR-10 and CIFAR-100 scores for the normalized (Algorithm 1) and non-normalized (Algo-
rithm 2) versions of aw-method; † - quoted from [41]; ∗ - results from our tests based on [4].




