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A. Implementation Details

For the image classification task, we deploy WideResNet
with depth 28 and width 10 as the neural network architec-
ture for our method. All the network parameters are set as the
original implementation in [16], except the last layer which
is modified as proposed in the main manuscript. Stochastic
gradient descent (SGD) with momentum of 0.9 is used to
train the network for 200 epochs with batch size of 128. At
the beginning of the training, the learning rate is set to 0.1
and it is then dropped by a factor of 10 at 50% and 75% of the
progress. Weight decay is set to 5⇥ 10�4. At the test time,
we draw 50 Monte Carlo samples to estimate p(�n  �⇤)
and to detect the OOD samples. To enforce the structure,
the last fully-connected layer is initialized with orthonormal
weights, using the method discussed in [11]. Then, to assign
class membership probabilities, softmax function is used on
the cosine similarities between the feature vector and the
rows the fully-connected layer using pln = e| cos(✓ln)|

P
l e

| cos(✓ln)| .
Algorithm 1 summarizes the training and testing phases of
the proposed approach.

B. Additional Experiments

Here, we report additional experimental results. The
dataset and the evaluation metrics are the same as main
manuscripts.

Figure 1 demonstrates the impact of the proposed training
scheme on the spectrum of the feature vectors. This figure
shows the ratio of the energy concentrated along each sin-
gular vector averaged over all the classes. The energy ratio
along the ith singular vector is calculated as �iP

j �j
. As dis-

cussed in Section 3, our goal is to make the feature vectors
of each class to lie on a 1-dimensional subspace and to make
the gap between the first eigenvalue �1 and other eigenval-
ues �j , j > 1 as large as possible. Figure 1 illustrates that

Algorithm 1 OOD detection using Union of 1D Subspaces.
Input: ID training dataset, testing set, critical spectral discrepancy �⇤,

Number of Monte Carlo samples S
Training:

Interclass constraint: Freeze weights in the last FC layer such that
wT

l wl0 = 0, l 6= l0, 8l, l0 = 1, . . . , L
Intraclass constraint: use (1) as the loss function

Testing:

1: Compute v
(l)
1 for each class l using training feature vectors

2: for in in the testing set do

3: Sample S feature vectors xs
n, s = 1, . . . , S

4: Compute �s
n for each sample xs

n using (2)
5: Estimate p(�n  �⇤) using (3)
6: if p(�n  �⇤) = 0 then

7: Classify in as an OOD sample
8: else

9: Use pln = e| cos(✓ln)|
P

l e
| cos(✓ln)| to assign class membership

10: end if

11: end for

the proposed training scheme can effectively achieve this
by increasing the energy ratio along the first singular vector
and reducing the energy concentrated along the rest of the
singular vectors. Consequently, the first singular vector of
each class will be more robust to noise.

Figure 2 demonstrates the robustness of the first singular
vector to outliers in a toy scenario. For this experiment, the
feature vectors from a single class of CIFAR10 are extracted
using the network trained with our proposed structure. Then,
some percentage of the vectors are replaced by feature vec-
tors from the other classes, which act as outliers. The figure
shows the correlation between the singular vectors of con-
taminated and clean data for different noise levels, averaged
over 10 trials. Correlation of 1 means that the direction of
the singular vector has not changed at all after the introduc-
tion of the outliers. This experiments illustrate the fact that
the first singular vector of the data is very robust to outliers
and its direction does not change much even after replacing
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Figure 1. Energy Ratio of the training samples along the first 100
singular vectors of features extracted using WideResNet with and
without our proposed embedding trained on (a) CIFAR10 and (b)
CIFAR100. The proposed embedding increases the energy along
the first singular vector from 98.3% to 99.9% for CIFAR 10 and
from 91.8% to 99.8% for CIFAR100.
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Figure 2. Correlation of different singular vectors of noisy data
with the same singular vector of clean data, averaged over 10 trials.
Feature vectors corresponding to the first class of CIFAR10 act as
the data and the feature vectors belonging to other classes are used
as outliers. Noise levels up to 50% have almost no impact on the
direction of the first singular vector.

about half of the samples. This experiment validates the
motivation behind our method, which is the robustness of
the first singular vector. It is worthwhile to mention that,
in OOD detection setting studied in this paper, we do not
have such severe contamination, as v(l)

1 is extracted from the
training set and only a small subset of the feature vectors
might be noisy due to training error or misclassification.

0 10 20 30 40 50
75

80

85

90

95

100

Figure 3. Area Under ROC curve using the proposed framework
versus the number of the Monte Carlo samples used for estimating
p(�n < �⇤). The networks are trained on CIFAR10 and CIFAR100
and tested on TINr as the OOD dataset.
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Figure 4. ROC curves for different variants of the proposed
scheme in logarithmic scale, using CIFAR10 (ID) and TINr (OOD).
WideResNet (WRN) with depth of 28 and width of 10 is used as
the deep feature extractor.

Figure 3 examines the number of Monte Carlo samples
necessary for a good estimation of p(�n < �⇤). It shows that
having as low as 10 samples can improve the results. How-
ever, as expected, having more samples always leads to better
estimation and better performance. It is also worthwhile to
mention that since the samples can be drawn concurrently,
drawing more samples does not increase the running time
much.

Figure 4 shows the true positive rate against false posi-
tive rate, also known as the receiver operating characteristic
(ROC) curve, for different variants of the proposed architec-
ture. This figure demonstrates how each component of the
method, such as intraclass constraint, interclass constraint,
and number of Monte Carlo (MC) samples S, affect the ROC.
In this study, CIFAR10 is used as the in-distribution (ID)
dataset and the resized version of the TinyImagenet (TINr) is
used as the out-of-distribution (OOD) dataset. p(�n < �⇤)
is used for OOD detection in all the different variants, even
for the baseline, i.e., Plain WideResnet. However, no MC



Table 1. Detection errors and f1-scores achieved by setting �⇤ using the training set, compared to the best achievable values, on different
pairs of ID and OOD datasets.

Training OOD Detection Error F1 Score

dataset dataset Fixed �⇤ Best �⇤ Fixed �⇤ Best �⇤

CIFAR10

TINc 10.4 6.8 90.5 93.0
TINr 7.6 6.2 92.5 93.6

LSUNc 8.6 3.7 93.1 96.2
LSUNr 4.1 3.8 95.0 96.1

CIFAR100

TINc 19.8 18.9 79.2 81.0
TINr 17.6 14.2 83.2 86.0

LSUNc 14.9 13.9 76.1 76.9
LSUNr 12.9 11.3 85.3 88.6

Table 2. Performance of different OOD detection tests, in term of AUROC, for distinguishing ID and OOD test set data.

Training OOD OOD Test

dataset dataset p(�n  �⇤) E{�n}  �⇤ �n  �⇤

CIFAR10

TINc 98.1 95.8 95.6
TINr 98.5 95.5 95.6

LSUNc 99.4 96.5 96.9
LSUNr 99.3 96.6 96.4

CIFAR100

TINc 89.1 87.0 85.7
TINr 93.7 85.9 85.2

LSUNc 93.8 88.0 87.0
LSUNr 95.7 93.0 91.2

sampling is performed for the baseline architecture. Specifi-
cally, enforcing only the intraclass constraint on the model
and using only S = 10 MC samples increases the area un-
der the ROC curve (AUROC) by about 3%, from 94.7% to
96.3%. On the other hand, imposing the interclass constraint,
i.e., enforcing orthogonality on the subspaces, improve the
AUROC by another 1.%. Finally, as expected, using more
samples to estimate p(�n < �⇤) can also increase the AU-
ROC. For example, increasing the number of samples from
10 to 50 can improve the results by another 1.2%, leading to
AUROC of 98.5%.

AUROC, as well as the area under the precision-recall
curve (AUPR) and false positive rate at true positive rate of
95% that are reported in the main manuscript, is independent
of the value of the critical spectral discrepancy �⇤. However,
f1-score and detection error do depend on �⇤. In the main
manuscript we reported the best detection errors and f1-
scores achievable by the baselines and our proposed method.
Here, we investigate the impact of choosing �⇤ using the
training set. In general, having �⇤ as a parameter gives
us the freedom to tune the precision and recall according
to the requirements of the application at hand. To fix �⇤

using the training set, we choose a value for which most,
say 98%, of the training samples have a spectral discrepancy
of less than this value. Table 1 summarizes the results and
compares them with the best achievable detection errors and
f1-scores. It is evident that the results are not far from the

best achievable results. This indicates that the training set
can be used to set the value of �⇤ or to estimate the general
proximity of best �⇤.

Finally, Table 2 compares the results, in terms of AU-
ROC, for different OOD detection tests. Motivated by our
theoretical investigation in Section 3 of the main manuscript,
we proposed to use p(�n  �⇤) for OOD detection. This
is because if the feature vectors belonging to the known
classes lie on 1-dimensional subspaces, the OOD feature
vectors will occupy the same region with probability 0, un-
less they are drawn from the exact same distribution. Here,
we demonstrate the results for a few more OOD detection
tests. In particular, expected spectral discrepancy of each
sample E{�n} can also be used for OOD detection. E{�n}
can be estimated using a similar MC sampling technique.
Furthermore, one can perform a single conventional for-
ward pass and calculate a point estimate of �n. This table
shows the performance for each of these tests. This table
confirms our theoretical investigation and shows that using
p(�n  �⇤) is the most accurate OOD test. This is partly
because ID test samples might have an expected spectral
discrepancy outside the tiny region occupied by ID training
samples, but they will have a nonzero probability in that
region. While on the hand, the OOD samples will rarely
have nonzero probability inside the same region. This also
shows that addition of MC sampling and using probabilistic
OOD tests, such as expected value, is not enough for good



Method Extra Information Used
Discrepancy Loss [15] OOD samples during training
Outlier Exposure [2] OOD samples during training

Word Embedding [12] Auxiliary text data to achieve better embedding during training
ODIN [6] OOD samples for validation (to tune perturbation magnitudes for adversarial examples)

Mahalanobis [5] OOD samples for validation (to tune hyperparameters or perturbation magnitudes for adversarial examples)
GPND [9] OOD samples for validation (to tune penalty terms and latent space size)

Confidence Loss [4] OOD samples for validation (to tune penalty term)
Likelihood Ratio [10] OOD samples for validation (to tune hyperparameter µ)

Ensemble [13] OOD samples for validation (hyper parameter tuning)
OLTR [7] None (but is able to leverage OOD samples for validation)

Softmax Pred. [1] None
Conterfactual [8] None

Generalized ODIN [3] None
CROSR [14] None

Table 3. A non-exhaustive summary of recent OOD detection methods. The information provided in the table is extracted from their
corresponding manuscript or the code provided by authors.

detection performance. The OOD detection test needs to
reflect the underlying structure of data in the feature space
and co-design of the embedding function and the OOD test
can lead to significant improvements.

C. Related Methods: Leveraging OOD Data

for OOD Detection

In scenarios where a subset of OOD samples is available
at the training time, they can be used to improve the per-
formance. Authors in [2, 15] have shown the advantage of
the using OOD samples during training. The main idea is
to create a feature space such that the ID samples are as
distinguishable as possible from OOD samples, by maximiz-
ing the distance between the ID samples and OOD samples.
Other modalities of data, such as text, can also be leveraged
to obtain a better embedding [12].

However, most of OOD detection methods make the as-
sumption that OOD samples are not available during training,
but a very small subset is available to tune some of the hy-
perparameters. For instance, ODIN [6] uses perturbed test
samples and temperature scaling to reject the samples that
are less robust to perturbations. OOD samples are used
to tune the magnitude of the adversarial perturbation. The
method proposed in [5] is more related to our proposed ap-
proach. In [5], the Mahalanobis distance between the test
feature vectors and the training ID samples is used to detect
OOD samples. Similar to ODIN, the method in [5] uses
OOD samples to find the best values for their proposed OOD
classifier. For the scenario where adversarial examples are
used to tune the hyperparameters, a subset of OOD samples
is used to find the best magnitude of the adversarial pertur-
bation. Similarly, [10] adds perturbations, which needs to be
tuned using OOD samples, to the input samples and uses the
likelihood ratio to detect OOD samples. Furthermore, there
are many methods that do not use off-the-shelf classifiers
and train new classifiers, autoencoders, or generative mod-
els to enforce their desired structure on the feature space.
While most of the hyperparameters can be tuned using ID

validation set, some of the hyperparameters such as the la-
tent space size, loss terms, and regularization terms need
to be tuned by OOD samples[4, 13, 9]. For instance, [13]
exploits OOD samples for early stopping of the ensemble
of the classifiers, as well as hyperparameter tuning, and [9]
uses them to find the best latent space size and penalty terms
for the loss functions.

A few OOD detection methods rely only on ID validation
set to tune hyperparameters. For example, the approach
in [1] uses the softmax output to discriminate between the
OOD and ID samples and, similar to our method, does not
have any hyperparameters to be tuned by OOD validation set.
Open Long-Tailed Recognition (OLTR) [7] creates a meta-
embedding and employ the similarity to the known classes
to reject OOD samples. Authors in [7] have shown that their
method is able to perform well with and without using OOD
samples for hyper-parameter tuning. Similarly, methods in
[14, 8, 3] only use ID validation set to tune the parameters
of their model. Table 3 provides a non-exhaustive summary
of prior work and if/how they use extra information during
training and validation phases.
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