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Property 1. The angle between c̆ 1
pq and l̄q is equal to

the angle between c̆ 1
qp and l̄p. That is,
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pq, c̆

0
qp) ≡ ∠(c̆ 1

qp, c̆
0
pq). (1)

Proof. First, we only consider the circle going through
p, q and tangential to some vector τ̄p as shown in Fig. 1.
Moving the tangent vector τ̄p in its direction along the
circle yields another tangent vector τ̄q at q. We also
translate τ̄p to q. By construction, ∆Opq is equilateral.
Thus, ∠Opq = ∠Oqp. Since τ̄p and τ̄q are tangential to
the circle, we have α+ ∠Opq = β + ∠Oqp = π

2 , which
obviously gives α = β. WLOG, we assume vectors τ̄p,
τ̄q and ē are all unit vectors. As α = β, we have:

τ̄q = 2[(τ̄p · ē)ē− τ̄p] + τ̄p (2)

Now, we consider the two circles going through both
p and q while one is tangential to l̄p and the other is

𝒒

𝒑
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Figure 1: Illustration for (2). O is the center of the
circle. ē is a unit vector along pq.

tangential to the l̄q as shown in Fig. 2. Note that these
two circles are not necessarily co-planar. Using (2), we
can obtain

c̆1pq = 2[(c̆0pq · ~e1)~e1 − c̆0pq] + c̆0pq (3)

c̆1qp = 2[(c̆0qp · ~e1)~e1 − c̆0qp] + c̆0qp (4)

To prove (1), it is sufficient to prove equality of the two
dot products which can be simplified using (3) and (4):

c̆1pq · c̆0qp = 2(c̆0pq · ~e1)(c̆0qp · ~e1)− c̆0pq · c̆0qp (5)

c̆1qp · c̆0pq = 2(c̆0qp · ~e1)(c̆0pq · ~e1)− c̆0qp · c̆0pq (6)

It is obvious that the RHS of (5) and (6) are equal.
Therefore, these two angles are equal.
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Figure 2: Two circles given by p,q, c̆0pq and c̆0qp. Vectors
in red are co-planar with the red circle while those in
maroon are co-planar with the maroon circle.
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Figure 3: Typical tree reconstruction examples for standard (a) and our confluent (b,c) tubular graphs. (a) White
vectors represent CRF-based flow pattern estimates [3] using 26-grid regularization neighborhood N . In case of
thin sub-voxel vessels, such N has gaps creating inconsistent flow pattern for isolated small branches (yellow box)
lacking bifurcations used by divergence prior to disambiguate orientations. (a) Undirected geodesic tubular graph
with large KNN easily bridges such gaps ignoring (inconsistent) flow directions and produces topologically valid
vessel MST (blue), even though bifurcations are not accurate. (b) Directed confluent tubular graph is sensitive
to flow pattern errors. Minimum arborescence on this graph produces accurate bifurcations, but flow orientation
errors (yellow box) lead to wrong topology. (c) CRF-based flow pattern estimator [3] with modified anisotropic
KNN system N addresses the gaps at thin vessels. This improves flow orientations (white vectors in yellow box)
and resolves confluent tubular graph artifacts producing trees with accurate both topology and bifurcations.

CRF Regularization Neighborhood

Our tree extraction method is based on a directed
confluent tubular graph construction G = 〈V,A〉 pre-
sented in Sec. 3 of the paper. We proposed an approach
that builds confluent flow-extrapolating arcs c̆pq for our
graph from estimated oriented flow vectors {l̄p | p ∈ V }.
Specific flow orientations can be computed from Frangi
filter outputs using standard MRF/CRF regularization
methods [3] enforcing divergence (or convergence) of
the flow pattern. However, as mentioned in Sec. 3.3
and Sec. 4, we modified [3] by anisotropically enlarg-
ing the regularization neighborhood to improve the es-
timates of flow orientations, which are important for
our directed arc construction. The 26-grid neighbor-
hood regularization used in [3] generates too many
CRF connectivity gaps near the vessel tree periphery
where the signal gets weaker. Such gaps result in flow
orientation errors, see white vectors in the zoom-ins
in Fig. 3(a,b). While tree reconstruction on standard
undirected geodesic tubular graphs, see Fig. 3(a), are
oblivious to such errors, our directed confluent tubular
graph construction is sensitive to wrong orientations,
see Fig. 3(b). To address CRF gaps in the flow orien-
tation estimator [3], we modified their 26-grid regular-
ization neighborhood into anisotropic KNN based on

Frangi’s vessel tangents [1]. This significantly reduces
orientation errors in {l̄p | p ∈ V } and resolves conflu-
ent tubular graph artifacts, see Fig. 3(c). We detail
anisotropic KNN below.

CRF connectivity quality: Besides the size of the
neighborhood K, anisotropic KNN system has another
important hyper-parameter, aspect ratio ar. To se-
lect better parameters K and ar, we can evaluate CRF
connectivity system N using ROC curves for synthetic
vasculature volumes with ground truth. We consider
an edge in N as correct iff the projections of its ends
onto the ground truth tree have parent/descendant re-
lationship. The recall is the portion of the ground truth
tree covered by the correct edges. The fall-out is the
ratio of incorrect edges to the total edge count.

As shown in Fig. 4, simply increasing the size of
neighborhood closes many gaps but, in the mean-
time, introduces a lot of spurious connections between
different vessel branches. Thus, we propose to use
anisotropic neighborhoods. Specifically, the regulariza-
tion neighborhood is redefined as k anisotropic nearest
neighbors instead of regular grid connectivity. This
similar to the KNN except Mahalanobis distance is
used. This modification addresses the issue giving
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Figure 4: (Quasi) ROC curves evaluating accuracy of
the neighborhoods N used for flow pattern estimation,
as in [3]. We compare anisotropic KNNs and standard
26-grid connectivity (see gray dot). Evaluation is done
based on synthetic data with ground truth where cor-
rect connectivity is available. “ar” stands for the aspect
ratio and the number denotes the square of the aspect
ratio. “grid26” represent the regular 26 neighbors on
grid. We select “ar10” with 4 anisotropic nearest neigh-
bourhood (ANN) connectivity system.

the state-of-the-art result, see Fig.3(c). To implement
such anisotropic neighborhood system, we first built an
isotropic KNN with some large K, eg. K=500. Then,
for each node and its neighbors, we transformed the
Euclidean distance into Mahalanobis distance based on
the tangent direction on the node. After this, we se-
lected K (eg. K=4) nearest neighbors for each node
again based on the Mahalnobis distance. Note that
such anisotropic neighborhood is symmetric since we
consider a pair of nodes as neighbor as long as one is
connected to the other.

Angular Error Measure

The average angular error introduced in [3] uses only
correctly detected points to compute the bifurcation
angular errors. Using such matching to compare dif-

ferent methods is unfair as for a particular detection
threshold these methods correctly detect different sets
of bifurcations. So, we match all ground truth bifur-
cations to closet branching points on the detected tree
regardless of their proximity. For certain thresholds,
this causes many incorrectly matched bifurcation and
large errors. Despite that such statistic is influenced
significantly by random matches, it is meaningful for
comparing different reconstruction methods.

Synthetic Data with Ground Truth

Zhang et al. [3] generated and published a dataset
with ground truth using [2]. We found that the diver-
sity of bifurcation angles is limited. The mean angle is
68◦ and std is 17◦. To increase the angle variance, we
introduce a simple modification of vessel tree genera-
tion. When a new bifurcation is created from a point
and existing line segment, we move the bifurcation to-
wards one of the segment’s ends chosen at random de-
creasing the distance by half. The new mean is 68◦ and
std is 29◦. We generate 15 volumes 100×100×100 with
intensities between 0 and 512. The voxel size is 0.046
mm. We add Gaussian noise with std 10 and 15.
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