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1. Visualizations of Activation Statistics from
Real and Synthetic Data

In our paper, we have presented the distributions of mean
and standard deviation values in one channel (Figure 3 in our
main paper). To give ampler evidence, we provide more vi-
sualizations for other channels in Figure 1. Take Figure 1(a)
and 1(b) for example, each of them represents the mean or
standard deviation in one channel for different types of data.
Compared with the statistics of real data which are consid-
ered as reasonable references, the mean values of DSG data
are more dispersed than those of ZeroQ data, as well as the
standard deviation values. Meanwhile, the distributions of
ZeroQ in each bar graph are always in the immediate vicin-
ity of BN statistics (the red dash line). Figure 1(c) and 1(d)
show the case of another channel, which has just the same
phenomenon as described above.

To further demonstrate that to what extent our method
really affects, we additionally showcase some box figures in
the following for auxiliary instruction (see Figure 2). As can
be obviously seen from the figure, both the mean and stan-
dard deviation statistics of ZeroQ [1] data are centralized,
which have shorter boxes in Figure 2(b) and 2(e). However,
real data (Figure 2(a) and 2(d)) and DSG data (Figure 2(c)
and 2(f)) have longer boxes, which implies that the distribu-
tions of each sample are more dispersed.

Take a closer look at those turning points on the line.
Each turning point represents the value of BN mean/standard
deviation in one layer. The offset between the turning point
and the middle of the box at the same column is much smaller
in ZeroQ cases, which means the statistics of ZeroQ data
mostly fit the distribution of BN statistics. Whereas as for
DSG data, the offset is big, beneath or over the middle of
the corresponding box, which implies that the statistics of
synthetic data are no longer overfitting to BN statistics.

*Equal contribution.
†Corresponding author
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Figure 1: Mean and standard deviation of the activations in two
different channels of ResNet-18 when feeding different types of
data (with 256 samples). (a) and (b) show the mean and deviation
of one specific channel, while (c) and (d) show another.

In short, compared with ZeroQ, distribution statistics of
DSG data are much closer to those of real data for two
reasons: the dispersion in one layer and the offset to BN
statistics. We attribute that to the approaches proposed in our
paper, i.e. SDA and LSE. The former slacks the alignment
of the feature statistics to overcome the overfitting issue
and the latter applies the layerwise enhancement to reinforce
specific layers. We combine these two approaches and obtain
diversified samples.

2. Additional Experiments on Other Dataset
and Quantization Methods

In our paper, we have conducted a bunch of experiments
to evaluate the effect of our method in both mitigating the
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Figure 2: Comparison between real data and synthetic data (generated by DSG and ZeroQ) with 256 samples of each.

homogenization issue and improving the final performance.
To further demonstrate the robustness and the general appli-
cability of our method, we provide additional experiments
as corroborations to support our viewpoint.

Results on CIFAR-10 We show extra results of our DSG
on CIFAR-10 [2] dataset with ResNet-20 [4] and VGG16-
bn [8]. See Table 1 and 2. Note that the size of the image
sample in the CIFAR-10 dataset is 32 × 32, much smaller
than that in the ImageNet dataset (224×224) which is widely
evaluated in our paper. The experimental results show that

Method No D No FT W-bit A-bit Top-1

Baseline – – 32 32 94.08

Real Data % ! 4 4 87.38

ZeroQ ! ! 4 4 85.39
DSG (Ours) ! ! 4 4 87.75

Real Data % ! 6 6 93.80

ZeroQ ! ! 6 6 93.33
DSG (Ours) ! ! 6 6 93.79

Real Data % ! 8 8 93.95

ZeroQ ! ! 8 8 93.94
DSG (Ours) ! ! 8 8 94.07

Table 1: Results of ResNet-20 on CIFAR-10.

our DSG still outperforms other SOTA generative data-free
quantization methods when generating samples with a small
size.

Evaluation with DFQ DFQ [6] has proposed cross-layer
range equalization to equalize the different channel ranges
of weight in per-layer quantization and bias correction to
eliminate the biased quantization error. Both of the two
techniques rely on the statistics of BN layers following the
convolution layer. Therefore, DFQ only works on specific
network architectures and cannot be commonly practiced,

Method No D No FT W-bit A-bit Top-1

Baseline – – 32 32 93.86

Real Data % ! 4 4 92.50

ZeroQ ! ! 4 4 91.79
DSG (Ours) ! ! 4 4 92.89

Real Data % ! 6 6 93.48

ZeroQ ! ! 6 6 93.45
DSG (Ours) ! ! 6 6 93.68

Real Data % ! 8 8 93.59

ZeroQ ! ! 8 8 93.53
DSG (Ours) ! ! 8 8 93.61

Table 2: Results of VGG16-bn on CIFAR-10.



since BN layers in DFQ are always needed to proceed be-
hind each convolution layer to quantize the corresponding
activations. Fortunately, generative methods, such as ZeroQ
and our DSG, can generate synthetic data for arbitrary archi-
tectures, and the statistics of activations can be applied to
DFQ replacing the BN statistics. Table 3 shows the closeups
of two generative data-free quantization method, i.e., ZeroQ
and DSG, based on DFQ. Results show that our DSG out-
performs ZeroQ by 0.57% and 3.13% in W6A6 and W8A8
cases.

Method No D No FT W-bit A-bit Top-1

Baseline – – 32 32 69.76

Real Data % ! 6 6 59.16

ZeroQ ! ! 6 6 58.12
DSG (Ours) ! ! 6 6 58.69

Real Data % ! 8 8 69.22

ZeroQ ! ! 8 8 65.75
DSG (Ours) ! ! 8 8 68.88

Table 3: Evaluation with DFQ using ResNet-18 on ImageNet. We
use cross-layer equalization and bias correction proposed by DFQ
to perform per-layer quantization.

More Evaluation with AdaRound We present more
empirical results on AdaRound [5], and the experiments can
be broadly divided into two categories: quantizing the weight
to extremely low bit-width and quantizing both weight and
activation. We use image prior [9] and labels [3] in these
experiments. First, we quantize the weight to 3/4 bit-width
based on the practical lightweight MobileNetV2 [7]. As
Table 4 shown, DSG surpasses the SOTA generative meth-
ods by 34.33% with the weight quantized to 3 bit-width.
Meanwhile, we provide results of DSG with AdaRound on
ResNet-18 [4] quantized to W4A8 in Table 5, and it also
shows that our DSG surpasses ZeroQ by a large margin.

Method No D Label Image Prior W-bit A-bit Top-1

Real Data % % % 3 32 58.13

ZeroQ ! ! ! 3 32 11.07
DSG (Ours) ! ! ! 3 32 45.40

Real Data % % % 4 32 68.37

ZeroQ ! ! ! 4 32 56.16
DSG (Ours) ! ! ! 4 32 58.13

Table 4: Evaluation with AdaRound using MobileNetV2 on Ima-
geNet.

Method No D Label Image Prior W-bit A-bit Top-1

Real Data % % % 4 8 68.24

ZeroQ ! ! ! 4 8 56.34
DSG (Ours) ! ! ! 4 8 62.40

Table 5: Evaluation with AdaRound using ResNet-18 on ImageNet.
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