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Figure 1: An example of our experimental scenes. It con-
sists of occlusions (wooden fence), targets (book) and an
event camera installed on a programmable sliding trail.

1. Experimental Scenes
As displayed in Fig. 1, we install the event camera on

a programmable sliding trail and employ a wooden fence
to simulate the densely occluded scenes. When the cam-
era moves linearly on the sliding trail, the events triggered
by the brightness difference between occlusions and targets
can be collected from different viewpoints.

2. Extra Experimental Results
2.1. Influence of Camera Motion Accuracy

Our experiments are mainly based on one-dimensional
uniform camera motion, thus the estimation of the camera
speed is directly related to the refocusing module and the
overall performance of our proposed method. To investigate
this, we choose two pairs of data (from indoor and outdoor
datasets each) and apply E-SAI+Hybrid to them with cam-
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Figure 2: Influence of camera motion accuracy. (a) Recon-
struction results of indoor and outdoor data under different
estimates of camera speed. (b), (c) Quantitative results. The
real camera speed is 0.177m/s.

era speeds varying from 0.1 m/s to 0.24 m/s. Note that
the actual camera speed is 0.177m/s.

As illustrated in Fig. 2, the reconstruction quality of in-
door data is severely degraded when the speed estimation
error is large. Since the targets in our indoor dataset are of-
ten closer to the camera (i.e. close-view targets), estimation
error will cause a significant shift of targets on the imaging
plane. Thus these signal events cannot be reliably aligned
during refocusing and may be treated as noise during re-
construction, leading to serious blur and missing details in
final results. On the contrary, our outdoor dataset mainly
contains far-view targets, and thus is less sensitive to the



Figure 3: Qualitative comparisons between F-SAI and E-SAI algorithms on the indoor dataset.

estimation error.

2.2. Analysis of Indoor and Outdoor Results

In the experiments on indoor dataset, we mainly test F-
SAI and E-SAI methods with simple objects. As displayed
in Fig. 3, the results of F-SAI and E-SAI+ACC are often
blurry and noisy since the light information of both occlu-
sions and targets are equally treated during reconstruction.
For the learning-based SAI, F-SAI+CNN is able to recover

the shape of targets and achieve a better de-occlusion effect
than F-SAI, but the result still suffers from the issues of de-
tail losses and artifacts. On the other hand, it is hard for
E-SAI+CNN to simultaneously handle spatial and temporal
information inside events, thus the reconstruction quality is
often degraded by the disturbance of noise events.

For the outdoor dataset, we consider more general tar-
gets including cars, fields and buildings. Compared with
the indoor scenes, outdoor lighting conditions are much



Figure 4: Qualitative comparisons between F-SAI and E-SAI algorithms on the outdoor dataset.

more complicated, making it harder for frame-based SAI
methods (F-SAI and F-SAI+CNN) to generate clean re-
sults, as shown in Fig. 4. Similarly, complex lighting con-
ditions also degrade the performance of E-SAI due to the
increase of noise events, e.g. the events triggered by the
brightness change of occlusions EOOθ and occluded scenes
EAAθ . The rising number of noise events not only makes the
target indistinguishable in the results of E-SAI+ACC, but

also brings more disturbances to E-SAI+CNN, deteriorat-
ing the reconstruction quality with serious saturation prob-
lem. Thanks to the hybrid SNN-CNN architecture, the issue
of noise events can be alleviated from the temporal dimen-
sion. Therefore, our E-SAI+Hybrid is more robust to com-
plex lighting conditions compared to other SAI methods,
and can achieve the best visual effects on both indoor and
outdoor datasets.



3. Extra Information
3.1. Implementation Details

Each data sequence lasts about 0.7 seconds in our
datasets. In our experiments, we divide each sequence into
30 time intervals, i.e. N = 30, for E-SAI+CNN and E-
SAI+Hybrid to make the input information equal. In net-
work training, we set the loss weights as [βper, βpix, βtv] =
[1, 32, 2e−4]. For the perceptual loss, we set the weights
[λ2, λ4, λ7, λ10] = [1e−1, 1/21, 10/21, 10/21].

3.2. Network Architectures

Let cCsS-K denotes a C × C Convolution-BatchNorm-
ReLU layer with stride S and K kernels. r-K denotes a
residual block composed by a c3s1-K layer and a 3 × 3
Convolution-BatchNorm layer with K kernels and stride
1. convCpP-K denotes a C × C Convolution layer with
stride 1, padding P and K kernels. deconv-K denotes
a 3 × 3 fractional-strided-Convolution-BatchNorm-ReLU
layer with K kernels and stride 1/2.

Then, the CNN decoder consists of: c7s1-64, c3s2-128,
c3s2-256, r-256, r-256, r-256, r-256, r-256, r-256, r-256,
r-256, r-256, deconv-128, deconv-64, c7s1-1. Note that
in the output layer c7s1-1, we replace ReLU function with
Tanh function to normalize the output and do not use batch
normalization. With the same CNN decoder, these learning-
based SAI methods in our experiments can be described as:

• F-SAI+CNN: conv3p1-16, conv1p0-16, conv1p0-32
followed by the CNN decoder.

• E-SAI+CNN: conv3p1-16, conv1p0-16, conv1p0-32
followed by the CNN decoder.

• E-SAI+Hybrid: Sconv3p1-16, Sconv1p0-16,
Sconv1p0-32 followed by the CNN decoder, where
SconvCpP-K denotes a C × C spiking-Convolution
layer with stride 1, padding P and K kernels.

For fair comparison, we also add skip connections between
the input tensor and the output of the 1-st, 2-nd Convolution
layers in F-SAI+CNN and E-SAI+CNN.


