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The supplementary materials for [8] contain implemen-
tation and training details, as well as other additional speci-
fications for the following studies:

A. 3D SGGpoint on Real-World 3D Scans.

B. 3D SGGpoint on Synthetic 3D Scenes.

C. Traditional Graph Representation Learning.

A. 3D SGGpoint on Real-World 3D Scans
We adopted the same dataset split [3] for method com-

parisons. To alleviate the serious object class imbalance is-
sues that appeared within the SG node recognition process,
we selected their so-called RIO27 annotation set (27 object
classes1) for our SGGpoint studies, rather than their ini-
tially published annotations (160 object classes) [4]. RIO27
annotation set was a subset mapping to the raw 160-class
one and it was later officially released in their repository
(here). Similarly, we firstly filtered out their annotated com-
parative relationships (e.g., bigger than and darker than)
and following [4] we considered only a subset of the rela-
tionships (16 structural relationships2) to formulate the SG
edge recognition as multi-class classification problems. All
irrelevant objects and inter-object structural relationships
were removed to obtain our cleared SG node and edge an-
notations. Our densely sampled point cloud representations
of 3D real-world scenes, together with these cleared SG
annotations, will be published online for reproducibility, as
well as fostering any further SGGpoint research.

1Cobject := {wall, floor, cabinet, bed, chair, sofa, table, door, win-
dow, counter, shelf, curtain, pillow, clothes, ceiling, fridge, tv, towel,
plant, box, nightstand, toilet, sink, lamp, bathtub, object, blanket}.

2Crelationship := {supported by, attached to, standing on, lying on,
hanging on, connected to, leaning against, part of, belonging to, build in,
standing in, cover, lying in, hanging in, spatial proximity, close by}.

We chose Adam as the optimizer with learning rate
and weight decay set to 1e-3 and 1e-4, respectively. The
SGGpoint framework was trained for 50 epochs with early
stopping techniques applied on held-out validation set, and
batch size was set to 4. We randomly cropped 4096 points
on-the-fly for each scene by maintaining a same sampling
ratio to be shared in between all object instances within any
given scenes. Such design was insensitive to the varying ob-
ject sizes and could thus ensure a balanced point sampling
achieved at instance-level. The SGGpoint framework pro-
posed for real-world 3D scans was established and trained
with four 11GB NVIDIA GeForce GTX 1080Ti GPUs.
More qualitative results can be found as Fig. 1.

B. 3D SGGpoint on Synthetic 3D Scenes
We followed the released dataset split and three-class

structural relationship annotations [9] to establish our train-
ing procedures. Moreover, the optimizer is selected as
Adam with learning rate and weight decay set to 1e-3 and
1e-4, respectively. The total training epochs were set to 100,
while batch size was set to 4. Since each room category
may own unique object classes, the number of object classes
for each room category was listed as follows: Cbedroom =
Cliving = 51, Coffice = 42, and Cbathroom = 31. Any
scenes containing more than 60 object nodes were divided
into sub-graphs for training. Two 11GB NVIDIA GeForce
GTX 1080Ti GPUs were employed for this group of exper-
iments.

C. Traditional Graph Representation Learn-
ing

Our contributions could also be validated on conven-
tional graph representation learning tasks, such as node-
wise classification and whole-graph recognition problems.
More specifically, our method was evaluated on three

https://github.com/WaldJohannaU/3RScan/blob/master/data/mapping.txt
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Figure 1. Qualitative visualization of the SGGpoint framework, where misclassified object and structural relationship samples are marked
with ground truth values in red, while the correct ones are shown in green with ground truth values omitted.



popular citation network datasets (Cora, CiteSeer, and
Pubmed) [7] and two molecular datasets (Tox21 and
BBBP) [6]. The evaluations were completed through two
universal benchmark scripts available for graph represen-
tation learning studies, with all specific training settings
unchanged for all method evaluation, except for repeating
their procedure 50 times for each approach. The following
experiments were conducted on one single 8GB NVIDIA
GeForce GTX 1070Ti GPU.

C.1. Node-wise classification on citation datasets

We applied a Pytorch Geometric [1] script (here) to repli-
cate the experiments on citation network datasets for eval-
uations among node-wise classification approaches. More
specifically, we adopted Adam as the optimizer with learn-
ing rate and weight decay set to 1e-2 and 5e-4, respec-
tively. All methods being investigated were trained over 200
epochs for each run and 50 runs in total to reach a steadily
averaged accuracy for performance comparisons. All GNNs
were instanced as two-layer networks with ReLU as in-
termediate non-linearity between, except for EGNN which
was reproduced following their settings reported in [2].
Their inner channels were set to 16 by default, unless oth-
erwise specified.

C.2. Whole-graph recognition on molecular
datasets

We adopted a DGL [5] script (here) to evaluate whole-
graph recognition approaches for molecular analysis. More
specifically, Adam was utilized for parameter optimization
with early stopping techniques applied over maximum 1000
training epochs. Scaffold splitting policy was employed
to divide all datasets into 80% training, 10% validation,
and 10% testing sets, where hyper-parameter searches were
conducted with Bayesian Optimization for 32 trials, i.e.,
a randomly initialized model would be trained for each
trial, and the best model achieving highest validation perfor-
mance could then be selected across trials for final evalua-
tion on testing set. We constructed GNNs with their default
architectures whose configuration details, as well as their
fine-tuned hyper-parameters such as learning rate and batch
size, can be found available in the online DGL repository.
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