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A. Additional Implementation Details

The hallucinator used in the main results is a two-layer
MLP. The first linear layer consists of three blocks: class
prototype block, seed example block, and noise block,
which take as inputs a class prototype, a seed example, and
a noise vector, respectively. We adopt a similar strategy as
in [3] to initialize the hallucinator. We initialize the class
prototype block and the seed example block by an identity
mapping plus small random noise. We initialize the noise
block by small random noise. We initialize the second lin-
ear layer by an identity mapping plus small random noise.
The initialization noise is sampled from a normal distribu-
tion with a zero mean and a standard deviation of 0.02.

B. Significance of Improvement

In Table A, we compare the scale of improvements on
COCO with the standard deviation computed from three
groups of CoRPNs [4], each with a different set of hyper-
parameters. We observe a notable (at least one standard
deviation) and stable improvement with hallucination, in-
dicating that hallucination positively impacts performance.

C. Additional Analysis on Different Types of
Hallucinators

In the main paper, we have investigated two types of hal-
lucinators — conservative and aggressive hallucinators. Here
we provide a more in-depth analysis of the two hallucinators
and focus on the impact of different design choices. First,
the feature space for hallucination is one of the primary
factors in designing a hallucinator. While hallucination is
restricted to the classifier’s feature space for the conserva-
tive hallucinator, the aggressive hallucinator generates ex-
amples in the feature space before the box head and thus
affects the components in the box head as well. Because
of the difference in the hallucination space, the hallucinator
architectures also vary from each other. The conservative
hallucinator consists of two fully-connected layers, denoted
as ‘Halluc after box head (2-fc)’ in Table B; the aggressive

Figure A. 1-shot detection results of TFA [2] (rows 1 and 3)
and ‘TFA + Halluc’ (rows 2 and 4) on PASCAL VOC under
base/novel split 1. Novel classes are {bird, bus, cow, motorbike,
sofa}. As discussed in the main paper, ‘TFA + Halluc’ signifi-
cantly improves the true positive detection while eliminating many
false positives, compared with the TFA baseline.

hallucinator consists of three convolutional layers, denoted
as ‘Halluc before box head (3-conv)’.

Second, the hallucinator architecture also impacts its
training procedure. Since the box head is shared by both
the box classifier and the box regressor, fine-tuning the box
head using the EM-style training procedure is not suitable
for the aggressive hallucinator. Therefore, we jointly train
the aggressive hallucinator with other model components.
Specifically, in joint training, the hallucinator is trained to-
gether with the classifier instead of being trained from an
already-trained classifier. We further explore different types
of training losses. For example, ‘Prototype cosine dist.
(joint)’ in Table B trains the hallucinator using the proto-
typical network loss with cosine distance [1]. The seed ex-
amples and the hallucinated examples are used as the sup-
port set to construct batch-wise prototypes; we compute the



1-shot 2-shot 3-shot

Method AP AP50 AP75 | AP AP50 AP75 | AP AP50 AP75
Ours CoRPNs w/ cos + Halluc 438 748 488 | 558 986 5.85 | 7.20 13.27 7.44
Baseline CoRPNs w/ cos [4], reported  4.13  7.20 437 | 541 9.58 5.62 | 7.06 13.19 7.24
Mean 3 x CoRPNs w/ cos [4] 421 7.15 459 | 523 927 5.50 | 7.06 13.06 7.09
Standard deviation 3 x CoRPNs w/ cos [4] 0.20 0.13 036 | 0.12 0.25 0.11 | 0.13 0.13 0.26

Table A. Comparison of the performance gain of hallucination with the standard deviation computed from three groups of CoRPNs on
PASCAL VOC under three base/novel splits. Bottom two rows: the mean and standard deviation obtained by three CoRPNs models,
each with a different hyper-parameter setting. Top two rows: results from CoRPNs and ‘CoRPNs + Halluc’, using the same set of hyper-
parameters. ‘CoRPNs + Halluc’ consistently outperforms CoRPNs by at least one standard deviation. Since ‘CoRPNs + Halluc’ and
CoRPNs share the same RPN outputs, the results imply that hallucination significantly improves CoRPNs.

Loss
Architecture Cross-entropy (EM) | Cross-entropy (joint) | Prototype cosine dist. (joint)
Halluc before box head (3-conv) - 33.7 40.8
Halluc after box head (2-fc) 45.1 41.9 33.8

Table B. Impact of different design choices of hallucinators on PASCAL VOC 1-shot AP50 results under train/novel split 1. Results in
bold outperform the TFA baseline (39.8).

Hallucinator ‘ Novel Set 1 ‘ Novel Set 2 ‘ Novel Set 3
Random noise 429 24.1 37.7
Random interpolation 46.7 22.0 322
Parametric (Ours) 47.0 26.3 40.4

Table C. 1-shot AP50 comparison of three hallucinators with
CoRPNs on PASCAL VOC under three base/novel splits. Our
parametric hallucinator outperforms the two non-parametric hal-
lucinator baselines under all three base/novel splits.

loss based on held-out query boxes. The other two training
loss options are ‘Cross-entropy (EM)’ which is the standard
EM-style training procedure described in the main paper,
and ‘Cross-entropy (joint)’ which jointly trains the halluci-
nator and the classifier using a cross-entropy loss.

Table B together with Table 5 in the main paper summa-
rizes the impact of the different design choices. Our main
observations are as follows. (1) Theses design choices of
the hallucinator, including the architecture, training proce-
dure, and training loss, all make a difference on the detec-
tion performance. (2) The training procedure and loss are
highly coupled with the hallucinator architecture. For ex-
ample, jointly training the hallucinator and the classifier is
beneficial to the aggressive hallucinator. (3) Learning a uni-
fied hallucinator across different datasets is an interesting
direction, which we leave as future work.

Figure B. 1-shot detection results of TFA [2] (rows 1 and 3) and
‘TFA + Halluc’ (rows 2 and 4) on COCO. Novel classes shown
here are {tv, bus, horse}. As discussed in the main paper, “TFA
+ Halluc’ significantly improves the true positive detection while
eliminating many false positives, compared with the TFA baseline.

D. Comparison with Non-parametric Halluci-

nators

) ) ) non-parametric hallucinator baselines.
We compare our parametric hallucinator with two non-

parametric hallucinators. The random noise hallucinator
generates examples by adding small random noise to seed

E. Visualizations

examples. The random interpolation hallucinator generates
examples by interpolating between random seed example
pairs. For a fair comparison, all three hallucinators produce
the same number of examples per batch. As shown in Ta-
ble C, our parametric hallucinator consistently outperforms

We provide some final detection visualizations on PAS-
CAL VOC (Figure A) and COCO (Figure B). Consistent
with the observations in the main paper, hallucination sig-
nificantly improves the true positive detection while elimi-
nating many false positives.



References

[1] Jake Snell, Kevin Swersky, and Richard S Zemel. Prototypical
networks for few-shot learning. In NeurIPS, 2017. 1

[2] Xin Wang, Thomas E. Huang, Trevor Darrell, Joseph E Gon-
zalez, and Fisher Yu. Frustratingly simple few-shot object
detection. In ICML, 2020. 1, 2

[3] Yu-Xiong Wang, Ross Girshick, Martial Hebert, and Bharath
Hariharan. Low-shot learning from imaginary data. In CVPR,
2018. 1

[4] Weilin Zhang, Yu-Xiong Wang, and David A. Forsyth. Co-
operating RPN’s improve few-shot object detection. arXiv
preprint arXiv:2011.10142, 2020. 1,2



