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In this supplementary material, we provide the detailed
network architecture, implementation details, 3D detection
on all categories, more qualitative results, and discussion of
failure cases.

1. Architecture of Our Pipeline

We show the architecture of LEN, ODN, LIEN, and
SCGN in Figure 1.

2D Detector, LEN, ODN. Following [6, 2], we use Faster
RCNN [7] trained on COCO dataset [4] and fine-tuned on
SUN RGB-D [8] as 2D detector. The 2D detection results
on SUN RGB-D are filtered and matched with the ground-
truth 3D object bounding box during the data preparation
procedure provided by [6]. During the initialization stage,
we use LEN and ODN architecture shown in Figure 1 simi-
lar with [6].

LIEN. Our proposed LIEN consists of an image encoder
followed by a three-layer MLP to embed a single image
into a code. When evaluating on SUN RGB-D, the category
labels are mapped to the ones used by Pix3D and concate-
nated to the image feature following [6]. To construct the
shape elements for LDIF decoder, we follow [1] to reshape
the 1344-dim vector into a 32x42 array, which corresponds
to 42-dim (10 for analytic code and 32 for latent code) codes
of the 32 shape elements.

SGCN. Before being fed into each node, the features from
different sources are flattened, concatenated, and embedded
into a 512-dim representation using FC layers. The weights
of the embedding network for layout, object, and relation-
ship nodes are independent of each other. After updated
with four steps of message passing, the representations of
layout and object nodes are decoded into parameters with
the networks specially designed for each of the node types.
The decoding networks follow the design of LEN and ODN,
and refine the parameterized initial outputs of them.
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2. Implementation details

Data Processing. For the training of LIEN, watertight
meshes [1] must be used to retrieve the ground-truth values
of inside-outside labels. However, the models of Pix3D [9]
are not that clean with inverted surface normals and holes
occasionally, which causes failure with the traditional flood
fill algorithm. To get more robust results, we utilize the
mesh fusion pipeline [5] which generates watertight meshes
by fusing signed distance fields from several virtual cameras
and applying the marching cube algorithm on it. Although
the mesh fusion pipeline makes the model thicker and intro-
duces noise to the ground-truth sample points, we evaluate
it on the original mesh to directly compare with previous
works.
SGCN Outputs. As mentioned in main paper Section 3.1,
our SGCN predicts residuals to refine the parameters of ob-
ject bounding boxs, layout box, and camera pose. We fol-
low [6] to set the origin of the world coordinate frame at the
camera center, with the y-axis up and perpendicular to the
floor, and the x-axis aligned to the orientation of the cam-
era forward. Thus the camera pose can be parameterized
as R (β, γ), where β is the camera pitch and γ is the cam-
era roll. Also, a bounding box can be parameterized as 3D
center C ∈ R3, size s ∈ R3 and orientation θ ∈ [−π, π).
Specifically, a layout box can be represented as

(
C, sl, θl

)
,

and a object box can be represented as (δ, d, s, θ), where
δ ∈ R2 is the offset between 2D projection of 3D center
and detected 2D object bounding box center, and d is the
distance between 3D center and camera center.
Hyper Parameters. When training LIEN, we use 1024
near-surface samples and 1024 uniformly samples, and set
their loss weight λns = 0.1 and λus = 1. For shape el-
ement center loss, we let λc = 0.2. Following [6, 3],
classification and regression loss is used for parameters
of both LEN and ODN, which we denote as Lcls,regx =
Lclsx + λregx Lregx ,∀x ∈ {β, γ, θl, d, θ}. Other parameters
of LEN and ODN are using only regression loss. For cam-
era parameters, we set λβ = 0.25, λregβ = 40, λγ = 0.25,
and λregγ = 20. For layout box parameters, we set λC =
10, λsl = 10, λθl = 0.25, and λreg

θl
= 30. For object box
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Figure 1: Architecture of LEN, ODN, LIEN, and SGCN. Our pipeline takes features from LEN, ODN, LIEN and other
sources and embeds them into node representations. The parameter x0 initialized by LEN and ODN is then refined with
residual xr decoded from updated node representations, ∀x ∈ {β, γ, C, sl, θl, δ, d, θ, s}. Variables β, γ, θl, d, θ are parame-
terized following [6, 3]. We set dropout rate to 0.5 for all dropout blocks.
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parameters, we set λδ = 1, λd = 0.75, λregd = 6.7, λs =
10, λθ = 0.33, and λregθ = 30. When training with co-
operative loss and object physical violation loss, we set
λco = 150, λphy = 20, α = 100, k = 4.
Scene Mesh Reconstruction. Since our LIEN is trained
on Pix3D with only 9 categories like MGN of Total3D, we
suffer from the same problem with them when testing on
SUN RGB-D, that our LIEN can not generalize to some of
the categories. For the accuracy of the scene reconstruction,
we follow [6] to only consider certain categories of objects
(i.e. cabinet, bed, chair, sofa, table, door, bookshelf, desk,
shelves, dresser, refrigerator, television, box, whiteboard,
nightstand). As a result, the reconstructed scene mesh has
fewer objects than 3D detections.

3. 3D Detection on all categories

In this section, we report the average precision of 3D ob-
ject detection on all categories of SUN RGB-D for a full
comparison in Table 1. Our method achieves the best per-
formance for 27 over 33 categories and a significantly better
mean average precision.

4. More Qualitatively Comparison with MGN
on Object Mesh Reconstruction

In this section, we show more results on the object recon-
struction in Figure 4. Compared to MGN in Total3D[6], our
method produces more accurate geometry preserving high-
quality details especially on chairs, bookshelves, and those
shapes with relatively more complex topology.

5. More Qualitatively Comparison on 3D De-
tection and Scene Reconstruction

In main paper Section 4.2, we show qualitative results
of the 3D object detection and scene reconstruction. Here,
we show more results in Figure 5, Figure 6, and Figure 7.
We can observe that compared to the state-of-the-art method
[6], our method produces significantly more accurate ob-
ject pose estimation with fewer flying objects (Figure 5e,
Figure 6a), fewer objects intersected with each other (Fig-
ure 5a, Figure 6d, Figure 7e), and more accurate object ori-
entation estimation (Figure 5c, Figure 6e, Figure 7c). We
also observe fewer objects intersected with the layout box
(Figure 5d, Figure 6e, Figure 7a).

6. Qualitative Comparison of Ablation Study

In main paper Section 4.3, we quantitatively compare
the improvement of our proposed Lphy . While exhibit-
ing a small gap from the metric, we show in qualitative
results (Figure 2) that the visual difference is relatively
large. Objects are more likely to intersect with each other

Method CooP [2] Total3D [6] Ours
cabinet 10.47 14.51 33.93
bed 57.71 60.65 89.34
chair 15.21 17.55 35.14
sofa 36.67 44.90 69.10
table 31.16 36.48 57.37
door 0.14 0.69 5.82
window 0.00 0.62 0.00
bookshelf 3.81 4.93 18.33
picture 0.00 0.37 1.04
counter 27.67 32.08 57.02
blinds 2.27 0.00 1.69
desk 19.90 27.93 49.03
shelves 2.96 3.70 16.68
curtain 1.35 3.04 7.38
dresser 15.98 21.19 29.27
pillow 2.53 4.46 11.41
mirror 0.47 0.29 0.87
clothes 0.00 0.00 0.00
books 3.19 2.02 5.44
fridge 21.50 24.42 39.12
tv 5.20 5.60 11.17
paper 0.20 0.97 0.03
towel 2.14 2.07 7.73
shower curtain 20.00 20.00 0.00
box 2.59 2.46 6.71
whiteboard 0.16 0.61 2.39
person 20.96 31.29 20.82
nightstand 11.36 17.01 41.34
toilet 42.53 44.24 70.81
sink 15.95 18.50 33.81
lamp 3.28 5.04 11.90
bathtub 24.71 21.15 53.64
bag 1.53 2.47 6.82
mAP 12.23 14.28 24.10

Table 1: Average precision of 3D object detection on all
categories. For CooP, we report the better results from [6]
trained on NYU-37 object labels.

when trained without Lphy , which disobeys physical con-
text severely. On the contrary, training withLphy effectively
prevents these errors in the results.

We also quantitatively compare the supporting relation,
in main paper Section 4.3. Here in Figure 3, we qualita-
tively compare the understanding of supporting relation in
the front view of object 3D detection.

7. Failure Cases

We also show some failure cases in Figure 8. We observe
that although our LIEN performs well on Pix3D and is gen-
eralized to SUN RGB-D, it still cannot make plausible re-
construction for some objects in rarely seen shapes (i.e. the
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(a) Ours-Lphy (b) Full: with Lphy

Figure 2: Scene reconstruction samples of Ours-Lphy and
Full. We observe more intersections between objects with-
out physical violation loss in some scenes.

(a) Total3D (b) Ours (c) GT

Figure 3: Qualitative comparison of supporting relation. We
take the front view of object 3D detection of main paper
Figure 5 column 4 as an example. We observe fewer flying
objects in our results than Total3D, which shows a better
understanding of supporting relation.

desks of (a) and (b), the bookshelves of (b) and (c), the bed
of (d)). For object detection, our pipeline fails to correctly
estimate the pose of the bed in (e), which might result from
the clustered scenes. Also, in some extreme cases, heavy
occlusion might cause our pipeline to fail like in (f).
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Input MGN [6] Ours Input MGN [6] Ours Input MGN [6] Ours

Figure 4: More qualitative comparisons on object reconstruction. We compare with MGN from Total3D [6].

5



In
pu

t
To

ta
l3

D

O
bl

iq
ue

V
ie

w

O
ur

s
G

T
To

ta
l3

D

C
am

er
a

V
ie

w

O
ur

s
G

T

Sc
en

e
M

es
h

To
ta

l3
D

O
ur

s

(a) (b) (c) (d) (e)

Figure 5: Qualitative comparisons on object detection and scene reconstruction.
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Figure 6: Qualitative comparisons on object detection and scene reconstruction.
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Figure 7: Qualitative comparisons on object detection and scene reconstruction.
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Figure 8: Failure Cases. Possible reasons might be unseen object shapes (a, b, c, d), heavy occlusion (f), cluttered scene (e).
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