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Overview
In this supplemental material, we provide more details

about scene layout and optical parameters of the camera
in Sec. A. Then, the details of the Confidence Guided Pre-
Dehazing (CGPD) and restoration modules are provided in
Sec. B. To better illustrate the effectiveness of the Improved
Deformable Alignment (IDA) module, we show the partial
cost volume can help the deformable module to estimate
the flow-like offset in Sec. C. Some typical frames of the
REVIDE and REVIDE-SYN datasets are presented in Sec. D
to further demonstrate the high fidelity of the collected haze
and the drawbacks of the synthetic haze. Finally, more
quantitative and qualitative comparisons on the REVIDE
dataset and real-world videos are provided in Sec. E.

A. More Details of Scene Layout and Camera Settings

Scene layout. As mentioned in the manuscript, the furnish-
ing styles of scenes are diverse which can be grouped into 4
categories: the eastern style, western style, modern style, and
laboratory style. In addition, the types of the selected room
are also manifold, e.g office, study room, small library, liv-
ing room, dining room, kitchen, bedroom, veranda, etc. To
further enrich these scenes, colorful objects are also arranged
to these scenes.

According to the layout of the collected scenes, we choose
one trajectory with suitable rotational direction from eight
pre-designed trajectories. For each scene, we also add some
positional disturbance to the chosen trajectory to enrich the
movement of the camera.
Optical parameters of camera. Before the acquisition, we
also carefully adjust the optical parameters of the camera
for obtaining high-quality frames. The focal length of the
camera is set in a range of 2 m to 5 m and the exposure
time is fixed at 0.025s to avoid the out-of-focus blurs and
motion blurs respectively. To get a suitable exposure value
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Figure A. Detials of the Confidence Guided Pre-
Dehazing (CGPD) module.

(EV=0) and alleviate camera noise, small ISO and F-number
are preferred. Finally, a standard gray card is used to correct
the white balance of the camera, which can minimize the
chromatism of the collected frames.

B. More Implementation Details

As shown in Fig. A, the enhance branch in the CGPD
module is built with three residual blocks [12]. Both the
confidence and dehazing heads consist of two convolutional
layers, except that the confidence head ends with a sigmoid
activation layer.

The reconstruction module in the proposed method is
built on the MSBDN [5] with some modifications. To reduce
the parameters, we remove the DFF modules and change the
numbers of residual blocks in the decoder and encoder mod-
ules to 2. Finally, the input channel of the first convolutional
layer is set to 16 according to the fused features FFused

t

from the Multi-Feature Fusion (MFF) module.

C. More Analysis on IDA Module

Due to the large displacement and changeful haze among
the neighboring frames in the REVIDE dataset, aligning
the features from the neighboring frames is more difficult
than other video datasets. To obtain more robust aligned
features, an Improved Deformable Alignment (IDA) mod-



ule is proposed in the manuscript by introducing the partial
cost volume [11] to the PCD module [12]. To prove that
the partial cost volume can boost the performance of the
deformable alignment, we re-train the proposed method with
the IDA and PCD modules on the REVIDE dataset respec-
tively. Then, We plot the mean values of the learned offsets
for all the deformable convolutions (DCNs) in the IDA and
PCD modules during the training process. As shown in
Fig. B, the mean value of the pixel shift among the training
frames (the red dotted line) is about 72 *. However, the
learned offsets of all the four DCNs in the PCD module are
less than 1 pixel (the dashed line), which is far less than
the pixel shift. On the contrary, the learned offsets of the
IDA module (the solid line) are more close to the optical
flows in a pyramid structure: the first three learned offsets in
the pyramid structure (IDA_Ln) are ascending as the spatial
sizes of the offsets increase and the mean values of the first
level (IDA_L1) are close to the pixel shift. It is also noted
that the final learned offsets (IDA_Cas) are relatively low
since the cascading DCN aims to refine the coarsely aligned
features to the sub-pixel accuracy. Therefore, the experi-
ments show that the introduction of the partial cost volume
can help the deformable module obtain the flow-like offsets,
and thus improving the alignment.

In addition, we also apply the proposed IDA module to
the EDVR [12] and find that it boosts the performance of
EDVR on the REVIDE by a margin of 0.48 dB †, which
demonstrates that the proposed IDA module can be gen-
eralized to other architectures with deformable alignment
modules.

D. Typical Scenes of Proposed and Synthetic Dehazing
Datasets

To further demonstrate the high fidelity of the collected
hazy scenes and the drawbacks of the synthetic hazy scenes,
we also present some typical frames in the REVIDE and
REVIDE-SYN datasets according to the prediction results
and MOS.

As shown in Fig. C and Fig. D, we present 3 typical syn-
thetic hazy scenes with low fidelity (classified as synthetic
scenes and get the most negative scores) and 3 typical col-
lected hazy scenes with high fidelity (classified as real-world
scenes and get the most positive scores). According to Fig. C,
the synthetic hazy scenes often suffers from the unnatural
distribution of synthetic haze (Fig. C (a)), extremely low
color saturation (Fig. C (b)), and inconsistent color tempera-
ture between scene and synthetic haze (Fig. C (c)). On the
other hand, the collected hazy scenes in the REVIDE dataset
can address the limitations in the synthetic hazy scenes and

*The mean value of pixel shift is calculated by averaging the optical
flows between adjacent haze-free frames by the PWC-Net [11].

†The PSNR of EDVR is 21.22 dB and the PSNR of EDVR-IDA is 21.70
dB.

Figure B. Mean values of the offsets during the training process.
IDA_Ln and PCD_Ln (n ∈ {1, 2, 3}) denote the mean values of
the learned offsets for the DCNs at the n− th level of the IDA and
PCD modules. IDA_Cas and PCD_Cas denote the mean values of
the learned offsets for the cascading DCNs of the IDA and PCD
modules. The red dotted line denotes the mean value of the pixel
shift among the training frames.

contain realistic haze with active light sources (Fig. D (a)),
natural dense haze layer (Fig. D (b)), and high fidelity haze
that is consistency with the color temperature of background
scene (Fig. D (c)).

E. More Results on REVIDE and Real-World Videos

To evaluate state-of-the-art dehazing methods on the RE-
VIDE dataset, we present more quantitative results in the
supplemental material. The evaluated method includes: a
traditional image dehazing algorithm (NLD [1]), six deep
image dehazing algorithms (GFN_dehazing[9], PFFNet [8],
GCANet[2], DA_dehazing[10], HardGAN[4]), and one deep
video restoration method (WDVR [6]). All the deep learning-
based algorithms are re-trained on the training set of the
REVIDE dataset. As shown in Tab. A, the architectures
with large receptive of field (PFFNet [8] and GCANet [2])
achieve better performance, which validates the motivation
of choosing MSBDN [5] as the reconstruction module in
the manuscript. We also present the full video results of the
DCP [7], EDVR [12], and CG-IDN in Fig. E. The proposed
CG-IDN obtains better dehazing results in the whole video.

To evaluate the performance of the proposed method
on the real-world videos, we use the semantic segmenta-
tion results as the metric to evaluate the perceptual qual-
ity of the dehazed videos. Specifically, we collect a real-
world hazy video with a smartphone and restore the video
by the EDVR [12] and CG-IDN. Then, we use Deeplab-
V3 [3] with ResNeSt [13] backbone (trained on the ADE20K
dataset [14]) to obtain the semantic segmentation results of
the hazy video and two dehazed videos from the EDVR and
CG-IDN. By observing the semantic segmentation results,



(a) Unnatural distribution haze (b) Extremely low color saturation (c) Inconsistent temperature color

Figure C. Typical synthetic hazy scenes with low fidelity.

(a) Realistic haze with active light sources (b) Natural dense haze layer (c) Consistence temperature color

Figure D. Typical collected hazy scenes with high fidelity.

Table A. More quantitative evaluations on the REVIDE dehazing datasets. Red texts and blue texts indicate the best and the second-best
performance respectively.

Methods NLD [1] GFN_dehazing [9] PFFNet [8] GCANet [2] DA_dehazing [10] HardGAN [4] WDVR [6] CG-IDN (Ours)

Trained on Real. PSNR 14.22 17.52 21.59 20.7484 17.23 20.09 17.95 23.21
SSIM 0.7338 0.8027 0.8611 0.8301 0.8390 0.8511 0.7597 0.8836

Figure E. Full video results of the DCP [7], EDVR [12], and
CG-IDN.

Figure F. Full video results of semantic segmentation. The last
three rows present the semantic segmentation results on the hazy
video and dehazed videos from the EDVR and CG-IDN.



Figure G. Video results on real-world hazy scenes. Please view this figure using the Adobe Acrobat Reader.

we can evaluate the perceptual qualities of different dehazing
algorithms. As shown in Fig. F, our method can work well
on videos with extremely dense hazes and help the semantic
segmentation algorithm to recognize all the two persons.

In spite of the absence of outdoor scenes, our dataset
can generalize to video dehazing in the wild since that most
collected indoor hazy scenes (80.1%) can be distinguished as
real-world scenes by the classifier (Table 4). In the meantime,
all three sets (ROS, CIS, SIS) receive similar fidelity scores
from 50 experienced researchers (Figure 7), which can verify
the credibility of the predictions by the classification network.
Moreover, we also evaluate the models in the manuscripts
on real-world outdoor hazy videos with dynamic scenes to
show the generalization of the proposed REVIDE dataset.
The Fig. G shows that our method trained on the REVIDE
dataset obtains better results with fewer color distortions and
temporal flickers.
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