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Example of FEC dataset

We demonstrate a triplet example from the FEC [4]
dataset to illustrate the similarity between Anchor, Positive,
and Negative images. As observed, Anchor is more similar
to Positive and more different from Negative.

(a) Anchor (b) Positive (c) Negative

Figure 1: An example of FEC dataset.Anchor and Positive are the
more similar images compared with Negative.

Implementation Details

We have described the implementation details for
FEC [4] triplet prediction in the main text. Network param-
eters of our model are 55.93M, compared to FECNet with
223.48M. Our flop is 6.32GMac and FECNet is 8.18GMac.
Here, we will supplementally describe the implementation
details for applications of emotion recognition and face ma-
nipulation.

For emotion recognition, we use the Deviation Learning
Network (DLN) without the crowd layer as backbone, and a
Softmax layer, in replacing of the layer that produces the ex-
pression embedding, to calculate the occurrence probabili-
ties of 7 emotions. The DLN is trained on the AffectNet [3]
training set and RAF-DB [2] training set for 10 epochs with
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a learning rate of 0.001 using SGD optimizer with a mo-
mentum of 0.9. The batch size is set to 30. The DLN is
supervised by the weighted cross-entropy loss.

For face manipulation, we make use of the pix2pixHD
Network [5] and train it by Adam with a learning rate of
2×10−4 for Generator and Discriminator. The pipeline can
be seen in Fig. 2. We use the supervised data of RaFD [1]
for generating manipulated faces during training while we
generate faces manipulated by different identities’ expres-
sion when testing.
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Figure 2: Conditional GAN for face manipulation. Please refer to [5] for more details about the Generator and Discriminator.


