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1. Example Proxy Model for a Real Scene

Figure 1 shows an example of the proxy model for a real

scene. The proxy geometry and the images come from a

single frame captured using the RGBD Kinect v2 device

mounted on a tripod. The approximate lighting was cap-

tured using a Ricoh Theta S 360 camera with 5 exposures

for high dynamic range placed approximately in the center

of the scene, roughly pointed at the Kinect.

2. Example of a Synthetic Scene

Figure 2 shows a full example of a synthetic scene, in-

cluding the scene proxy. This scene is part of the test set.

3. Examples of Predicted Intermediates

We show the intermediates predicted by our network for

the real and synthetic scenes from Figures 1-2. These inter-

mediates include the predicted shadow mask, the predicted

texture and lighting, and the predicted target lighting. For

the synthetic scenes, these can be compared to the ground

truth intermediates in Figure 2.

4. Comparison to Differential Rendering

Debevec’s [2] differential rendering method does not ap-

ply directly to shadow removal, since a proxy model is

(a) Depth Map D (b) Input Image I (c) HDRI Environment Map

(d) Geometry (top view) (e) Shadow Proxy P (f) Target Proxy P ′

Figure 1: Example of a rough proxy model for a real scene. The raw inputs are shown in the top row, where I and D come from the RGBD

sensor and the HDRI environment map comes from a 360 camera. The HDRI environment map (shown tonemapped) contains two light

sources: a nearby lamp just visible in the input image that causes most of the shadows (red), and a set of LED lights further away that

just barely cast a visible shadow (green). We show a top view of the proxy meshes of the three stools obtained from the depth sensor (the

ground plane and wall geometry is omitted for clarity). The scanned geometry is not only incomplete, but also distorted, especially around

the metal stools. The shadows in the proxy images P, P ′ are too rough to use directly (as shown in Figure 5, but they are good enough for

our system to remove the necessary shadows.
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(a) Input I (b) GT Lighting L̂ (c) GT Shadow Mask Ŝ (d) Shadow Proxy P (e) Object Mask Mo

(f) GT Output Î′ (g) GT Target Lighting L̂′ (h) GT Texture T̂ (i) Target Proxy P ′ (j) Receiver Mask Mr

Figure 2: Synthetic scene components for a test scene, including network inputs and ground truth intermediates.

(a) Input (b) Predicted Shadow Mask (c) Predicted Texture (d) Predicted Lighting (e) Predicted Target Lighting

(f) Input (g) Predicted Shadow Mask (h) Predicted Texture (i) Predicted Lighting (j) Predicted Target Lighting

Figure 3: Predicted intermediates from our system for synthetic and real scenes.

unlikely to be accurate enough for shadow removal. For

example, applying differential rendering to the scene from

Figure 2 results in an incomplete shadow removal because

of the low-quality geometry in the proxy model, as can be

scene in Figure 4. The ratio image shown here is computed

as P/P ′ (i.e. the difference in log space). Applying the ratio

image and inpainting gives Idiff = g
(

I
P/P ′

,Mo

)

.

Figure 5 shows an example of applying differential ren-

dering to the real scene in Figure 1. Note that for this ex-

ample, we also had to radiometrically calibrate our captured

lighting to match with the input image. The inaccurate ge-

ometry in the proxy causes the extent of the removed stool’s

shadow to be underestimated. The scene lighting, consist-

ing of one lamp visible in the image and one area light be-

hind the camera, is poorly represented by the distant light-

ing model captured by our HDRI environment map. In the

environment map, both light sources appear to be of simi-

lar intensity and therefore cast shadows of similar appear-
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(a) Input (b) Difference Image (c) Differential Rendering Result (d) Our Result (e) Ground Truth

Figure 4: Classical differential rendering on a synthetic scene. The incomplete geometry causes the proxy model to underestimate the

extent of the object’s shadow.

(a) Input (b) Difference Image (c) Differential Rendering Result

(d) Our Result (e) Ground Truth

Figure 5: Classical differential rendering on a real scene. The proxy model’s incomplete geometry underestimates the extent of the object’s

shadow (red), while the captured distant illumination drastically overestimates the intensity of the secondary light source (green).

ance. In reality, the area light is much further away and only

casts a faint shadow. Thus differential rendering attempts to

“remove” a shadow that is not truly present, resulting in a

brightening of the image.

5. Intrinsic Decomposition Subsystem Com-

parisons

Our intrinsic decomposition subsystem builds on a body

of related work. Figure 6 shows representative results com-

paring to recent works in shadow removal (Zou et al. [9],

trained on ISTD [7] and on our dataset) and intrinsic image

decomposition (Li and Snavely [5] using author’s weights).

Unlike our differential rendering system, these meth-

ods do not use proxy renderings, which provide significant

benefit. Moreover, shadow removal systems are generally

trained on SRD[6] and ISTD[7], which are greatly restricted

in lighting conditions and do not generally include the ob-

jects that cast the shadows. Shadow removal approaches

trained on these datasets have difficulty generalizing to full

scenes with more diverse lighting. When trained on our

dataset, with more varied lighting and textures, the archi-

tecture and losses of these shadow removal methods fail to

cleanly identify and remove shadows. Existing intrinsic de-

composition works are generally trained on images of entire

scenes (e.g. IIW[1]) or on single objects (e.g. MIT[3]), but

typically focus on removing lighting variation due to sur-

face orientation and not on cast shadows.

6. Ablation Study on Loss Terms

We show the importance of several of our loss terms in

Table 1 and Figure 7. The multiscale loss was the most

important loss term in our system – replacing it with an

L1 loss caused many shadows to be left behind, resulting

in a large drop in performance on the Shadow RMSE met-
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Figure 6: Decomposition of synthetic (top) and real (bottom) scenes. From left to right: input, shadow removal using Zou et al. [9] trained

on ISTD, shadow removal using Zou et al. trained on our dataset, intrinsic image reflectance using Li and Snaveley [5], our reflectance.

Note that the three compared methods only operate on the input image, while we also use a rendering of a rough proxy model.

Synthetic Real

RMSE Shadow RMSE Inpaint RMSE RMSE Shadow RMSE Inpaint RMSE

Ours 0.0248 0.0712 0.2143 0.0340 0.0616 0.0983

No Sparse Gradient Prior 0.0290 0.0783 0.2161 0.0586 0.0673 0.0991

No Exclusion Losses 0.0292 0.0792 0.2182 0.0375 0.0683 0.0990

No Multiscale Loss 0.0277 0.0926 0.2185 0.0355 0.0672 0.0997

Table 1: Comparison of error rates under various ablations of our system.

ric. The sparse gradient prior is important to maintain tex-

ture fidelity, as without it texture details are sometimes as-

signed to lighting, and subsequently get removed as shad-

ows. The exclusion losses perform a similar role but also

prevent shadows from remaining in the texture image.

7. Additional Real Data Results

We show several additional examples of our system’s re-

sults on real scenes, as well as comparisons with baselines,

in Figures 8-9. The inpainting baseline uses Hifill [8] to in-

paint pixels within the object mask as well as within the pix-

els of a supplied shadow mask. The Pix2Pix baseline is an

image-to-image translation network [4] trained to take all of

our inputs (including the proxy renderings) and output the

pixels on the planar receiver, with the object itself inpainted

with Hifill. Our method sometimes results in some over-

all color shifts (most evident in Figures 8b,9g), but percep-

tually our method is consistently better at removing shad-

ows than either method (especially on the high-contrast tex-

ture in Figure 8e), and our decomposition-based inpainting

scheme results in fewer artifacts in the inpainted regions.
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Figure 7: Effects of various loss terms on our results, with intrinsic decompositions. The multiscale loss results in better identification of

the extents of shadows. The sparse gradient prior helps keep texture out of the lighting image (so that the texture is not removed by the

shadow removal network). The exclusion losses perform a similar role but also prevent shadows from remaining in the texture image.
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Input Image Ground Truth Pix2Pix+Proxy HiFill+Shadows Ours
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Figure 8: Additional results of shadow removal on real scenes. Removed object(s) are indicated by the red arrows.



Input Image Ground Truth Pix2Pix+Proxy HiFill+Shadows Ours
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Figure 9: Additional results of shadow removal on real scenes. Removed object(s) are indicated by the red arrows.


