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A. Additional Ablation Study
We conduct supplementary ablation studies on the

tieredImagenet and CUB-200-2011 datasets, respectively.
The results are shown in Table 1 and 2, which also demon-
strate the effectiveness of the two specially designed com-
ponents, i.e., learning to complete prototypes and Gaussian-
based prototype fusion strategy (GaussFusion).

Table 1. Ablation study on tieredImagenet.

LCP GF MF 5-way 1-shot 5-way 5-shot
(i) 69.02 ± 0.72% 79.31± 0.18%
(ii)

√
71.66 ± 0.92% 80.78± 0.75%

(iii)
√ √

74.02 ± 0.89% 83.29 ± 0.18%
(iv)

√ √
81.04 ± 0.89% 87.42 ± 0.57%

Table 2. Ablation study on CUB-200-2011.

LCP GF MF 5-way 1-shot 5-way 5-shot
(i) 77.75 ± 0.82% 91.36± 0.41%
(ii)

√
84.36 ± 0.68 % 89.19± 0.47%

(iii)
√ √

88.87 ± 0.58% 93.99 ± 0.34%
(iv)

√ √
93.20 ± 0.45% 94.90 ± 0.31%

B. Derivation of GaussFusion
Proposition. Let f(x) and g(x) be a Multivariate Gaus-
sian Distributions with diagonal covariance, i.e., f(x) =
N(µ̂k, diag(σ̂
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2
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is a d-dimension random vector, µ̂k and µk denote d-
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variance vector. Then, their product obeys a new Multivari-
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, where � denotes the
element-wise product.
Derivation. Considering that the covariances of f(x) and
g(x) are simplified as diagonal covariances. This means
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that the variables of the random vector x are uncorrelated.
In this case, f(x) and g(x) can be simplified as the expres-
sion below:
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Thus, their product h(x) satisfies:
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