Supplementary Material for “Prototype Completion with Primitive Knowledge for Few-Shot Learning”

Baoquan Zhang, Xutao Li, Yunming Ye, Zhichao Huang, Lisai Zhang
Harbin Institute of Technology, Shenzhen
zhangbaoquan@stu.hit.edu.cn, {lixutao, yeyunming}@hit.edu.cn, iceshzc@stu.hit.edu.cn, LisaiZhang@foxmail.com

A. Additional Ablation Study

We conduct supplementary ablation studies on the tieredImagenet and CUB-200-2011 datasets, respectively. The results are shown in Table 1 and 2, which also demonstrate the effectiveness of the two specially designed components, i.e., learning to complete prototypes and Gaussian-based prototype fusion strategy (GaussFusion).

Table 1. Ablation study on tieredImagenet.

<table>
<thead>
<tr>
<th>LCP</th>
<th>GF</th>
<th>MF</th>
<th>5-way 1-shot</th>
<th>5-way 5-shot</th>
</tr>
</thead>
<tbody>
<tr>
<td>(i)</td>
<td>√</td>
<td>√</td>
<td>69.02 ± 0.72%</td>
<td>79.31 ± 0.18%</td>
</tr>
<tr>
<td>(ii)</td>
<td>√</td>
<td></td>
<td>71.66 ± 0.92%</td>
<td>80.78 ± 0.75%</td>
</tr>
<tr>
<td>(iii)</td>
<td>√</td>
<td>√</td>
<td>74.02 ± 0.89%</td>
<td>83.29 ± 0.18%</td>
</tr>
<tr>
<td>(iv)</td>
<td>√</td>
<td>√</td>
<td>81.04 ± 0.89%</td>
<td>87.42 ± 0.57%</td>
</tr>
</tbody>
</table>

Table 2. Ablation study on CUB-200-2011.

<table>
<thead>
<tr>
<th>LCP</th>
<th>GF</th>
<th>MF</th>
<th>5-way 1-shot</th>
<th>5-way 5-shot</th>
</tr>
</thead>
<tbody>
<tr>
<td>(i)</td>
<td>√</td>
<td>√</td>
<td>77.75 ± 0.82%</td>
<td>91.36 ± 0.41%</td>
</tr>
<tr>
<td>(ii)</td>
<td>√</td>
<td></td>
<td>84.36 ± 0.66%</td>
<td>89.19 ± 0.47%</td>
</tr>
<tr>
<td>(iii)</td>
<td>√</td>
<td>√</td>
<td>88.87 ± 0.58%</td>
<td>93.99 ± 0.34%</td>
</tr>
<tr>
<td>(iv)</td>
<td>√</td>
<td>√</td>
<td>93.20 ± 0.45%</td>
<td>94.90 ± 0.31%</td>
</tr>
</tbody>
</table>

B. Derivation of GaussFusion

Proposition. Let \(f(x) \) and \(g(x) \) be a Multivariate Gaussian Distributions with diagonal covariance, i.e., \(f(x) = N(\mu_k, \text{diag}(\sigma^2_k)) \) and \(g(x) = N(\mu_k, \text{diag}(\sigma^2_k)) \) where \(x \) is a \(d \)-dimension random vector, \(\hat{\mu}_k \) and \(\mu_k \) denote \(d \)-dimension mean vector, and \(\sigma^2_k \) and \(\sigma_k \) are \(d \)-dimension variance vector. Then, their product obeys a new Multivariate Gaussian Distributions \(N(\mu'_k, \text{diag}(\sigma'^2_k)) \) with \(\mu'_k = \frac{\sigma^2_k \odot \mu_k + \sigma_k^2 \odot \mu_k}{\sigma_k^2 + \sigma^2_k} \) and \(\sigma'_k = \frac{\sigma^2_k \odot \sigma^2_k}{\sigma_k^2 + \sigma^2_k} \), where \(\odot \) denotes the element-wise product.

Derivation. Considering that the covariances of \(f(x) \) and \(g(x) \) are simplified as diagonal covariances. This means that the variables of the random vector \(x \) are uncorrelated. In this case, \(f(x) \) and \(g(x) \) can be simplified as the expression below:

\[
\begin{align*}
 f(x) &= \prod_{i=0}^{d-1} \frac{1}{\sqrt{2\pi \sigma^2_{k,i}}} e^{-\frac{(x_i - \hat{\mu}_{k,i})^2}{2\sigma^2_{k,i}}} \\
 g(x) &= \prod_{i=0}^{d-1} \frac{1}{\sqrt{2\pi \sigma^2_{k,i}}} e^{-\frac{(x_i - \mu_{k,i})^2}{2\sigma^2_{k,i}}}
\end{align*}
\]

Thus, their product \(h(x) \) satisfies:

\[
\begin{align*}
 h(x) &= f(x)g(x) \\
 &= \prod_{i=0}^{d-1} \frac{1}{\sqrt{2\pi \sigma^2_{k,i}}} e^{-\frac{(x_i - \hat{\mu}_{k,i})^2}{2\sigma^2_{k,i}}} \frac{1}{\sqrt{2\pi \sigma^2_{k,i}}} e^{-\frac{(x_i - \mu_{k,i})^2}{2\sigma^2_{k,i}}}
\end{align*}
\]

\[
\begin{align*}
 &= \prod_{i=0}^{d-1} \frac{1}{\sqrt{2\pi \sigma^2_{k,i}}} e^{-\frac{(x_i - \hat{\mu}_{k,i})^2}{2\sigma^2_{k,i}}} + (x_i - \mu_{k,i})^2
\end{align*}
\]

\[
\begin{align*}
 &= \prod_{i=0}^{d-1} \frac{1}{\sqrt{2\pi \sigma^2_{k,i}}} e^{-\frac{(x_i - \hat{\mu}_{k,i})^2}{2\sigma^2_{k,i}}} + (x_i - \mu_{k,i})^2
\end{align*}
\]

\[
\begin{align*}
 &= \prod_{i=0}^{d-1} \frac{1}{\sqrt{2\pi \sigma^2_{k,i}}} e^{-\frac{(x_i - \hat{\mu}_{k,i})^2}{2\sigma^2_{k,i}}} + (x_i - \mu_{k,i})^2
\end{align*}
\]

\[
\begin{align*}
 &= \prod_{i=0}^{d-1} \frac{1}{\sqrt{2\pi \sigma^2_{k,i}}} e^{-\frac{(x_i - \hat{\mu}_{k,i})^2}{2\sigma^2_{k,i}}} + (x_i - \mu_{k,i})^2
\end{align*}
\]

\[
\begin{align*}
 &= \prod_{i=0}^{d-1} \frac{1}{\sqrt{2\pi \sigma^2_{k,i}}} e^{-\frac{(x_i - \hat{\mu}_{k,i})^2}{2\sigma^2_{k,i}}} + (x_i - \mu_{k,i})^2
\end{align*}
\]

where \(S_i = \frac{1}{\sqrt{2\pi (\sigma_{k,i}^2 + \sigma_{k,i}^2)}} e^{-\frac{(x_i - \mu_{k,i})^2}{2(\sigma_{k,i}^2 + \sigma_{k,i}^2)}}. \) Thus, \(h(x) \) is also a multivariate Gaussian distribution, i.e., \(N(\mu'_k, \text{diag}(\sigma'^2_k)) \) with mean \(\mu'_k = \frac{\sigma^2_k \odot \mu_k + \sigma_k^2 \odot \mu_k}{\sigma_k^2 + \sigma^2_k} \) and diagonal covariance \(\text{diag}(\sigma'^2_k) \) where \(\sigma'_k = \frac{\sigma^2_k \odot \sigma^2_k}{\sigma_k^2 + \sigma^2_k} \).