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1. Influences of Design Choices
Prototype initialization strategy. In our implementation, the proposed ProDA initializes the prototypes of the target domain
according to the pseudo predictions for the target images. Alternatively, the target prototypes can also be initialized according
to the ground truth labeling in the source domain. However, both choices have their pros and cons: the former suffers from
the noises in the pseudo labels whereas the latter suffers from domain gap as the prototypes of the two domains may not
accurately align. Table 1 shows that the two initialization strategies induce comparable results, as the prototypes are online
updated and can rapidly converge to the true cluster centroids. The quantitative performance is measured on the dataset GTA5
→ Cityscapes, whereas the other dataset shows similar results.

source ground truth target pseudo label

mIoU 53.6 53.7

Table 1: The performance of different target prototype initialization strategies. Here we only report the performance for the
1st training stage in the gta5 → Cityscapes task.

Strong augmentation. In the target structure learning, we take weak and strong augmentation views for the target image. We
employ random crop for weak augmentation and explore the effects of different augmentation types for the strong augmented
view. As shown in Table 2, random crop only gives the mIoU score 52.7, whereas adding RandAugment [1] and CutOut [2]
respectively improve the mIoU by 0.78 and 0.5. The strongest augmentation gives the best performance, indicating the
importance of data augmentation when learning the compact feature space for the target domain.

crop crop & RandAug crop & Cutout crop & RandAug & Cutout

mIoU 52.7 53.5 53.2 53.7

Table 2: The influence of various strong augmentations. Here we only report the performance for the 1st training stage in the
gta5 → Cityscapes task.

Effect of temperature during prototypical denoising. We rely on the prototypical context to rectify the pseudo labels. We
compute the softmax over feature distance to all the prototypes, and the softmax temperature τ influences the denoising effect
and requires balancing: when τ → 0, only the nearest prototype dominates whereas τ → ∞ causes that all the prototypes
are accounted equally. The influence of the temperature is shown in Table 3. We empirically set τ = 1 in our experiments.
Symmetric cross-entropy loss. We employ the symmetric cross-entropy loss (SCE) for robust learning to stabilize the early
training phase. The SCE has coefficients α and β that balance the cross-entropy and the reverse cross-entropy. Table 4 shows
that the final result is not sensitive to these hyper-parameters if β is not too small. Here, we follow the suggested setting
as [8], i.e., α = 0.1, β = 1.
The effect of loss weight. Table 5 shows that the final result is not sensitive to the KL loss weight (γ1) and the regularization
loss weight (γ2). In GTA5 → Cityscapes, we set γ1 = 10 and γ1 = 0.1, while in SYNTHIA → Cityscapes, we set γ1 = 10
and γ1 = 0.

*This work is done during the first author’s internship at Microsoft Research Asia.



0.1 0.5 1 2 3 5 10

mIoU 48.8 52.1 53.7 51.9 47.5 44.9 40.9

Table 3: The effects of temperature during the prototypical denoising. Here we only report the performance for the 1st
training stage in the gta5 → Cityscapes task.

α

β
0.1 0.5 1 5

0.01 46.4 52.7 53.8 53.6

0.1 47.6 52.9 53.7 53.5

0.5 50.4 53.1 53.3 53.5

1 51.1 52.7 53.1 53.6

Table 4: The influence of α and β in the symmetric cross-entropy (SCE) loss. Here we only report the performance for the
1st training stage in the gta5 → Cityscapes task.

γ1

γ2 0.02 0.1 0.2

2 52.9 53.7 53.5

10 53.2 53.7 53.4

20 53.4 53.6 52.1

50 53.6 52.0 52.1

Table 5: The influence of the KL loss weight (γ1) and the regularization loss weight (γ2). Here we only report the performance
for the 1st training stage in the gta5 → Cityscapes task.



2. Algorithm
The training procedure of our ProDA is summarized in Algorithm 1, which is composed of three stages. The first stage

consists of prototypical pseudo label denoising and target structure learning. In the second and third stages, we apply knowl-
edge distillation to a self-supervised model. For detailed equations and loss functions, please refer to our main paper.

Algorithm 1: ProDA

Input: training dataset: (Xs,Ys,Xt); prototype momentum: λ; weak, strong augmentations: T , T ′; the pretrained SimCLRv2
model: h

′
θ; pseudo label selection threshold: T ;

Output: the output model hθ .
1 Warmup: hθ = gθ ◦ fθ ← (Xs,Ys,Xt) according to [5];
2 Generate soft pseudo label: pt,0 ← hθ(Xt);
3 Prototype initialization: ηc ← (fθ,Xt);
4 EMA model initialization: h̃θ ← hθ;
5 for m← 0 to epochs do
6 for i← 0 to len(Xt) do
7 Get source images x(i)s ;
8 Train the model hθ using loss `sce;
9

10 Get target images x(i)t ;
11 Calculate the denoising weight ω(i,k)

t ;
12 Update the pseudo label ŷ(i,k)t ;
13 Train model hθ using loss `tsce;
14

15 Calculate the soft label zT , zT ′ ;
16 Train the model hθ using loss `tkl and `treg;
17

18 Calculate the batch prototype η′c ;
19 ηc ← ληc + (1− λ)η′c;
20 Update the EMA model h̃θ;

21

22 for stage← 1 to 2 do
23 Generate the pseudo label: ŷt ← ξ(hθ(Xt), T );
24 Student model initialization: h†

θ ← h
′
θ;

25 for m← 0 to epochs do
26 for i← 0 to len(Xt) do
27 Get source images x(i)s ;
28 Tune the model h†

θ using loss `sce;
29

30 Get target images x(i)t ;
31 Calculate the teacher probability hθ(x

(i)
t );

32 Calculate the student probability h†
θ(x

(i)
t );

33 Tune the model h†
θ using loss `tce and KL loss;

34 hθ ← h†
θ;



3. Detailed Ablation study
Here we show a detailed ablation study for all the 19 classes on GTA5 → Cityscapes.
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mIoU gain

init.
source 75.8 16.8 77.2 12.5 21.0 25.5 30.1 20.1 81.3 24.6 70.3 53.8 26.4 49.9 17.2 25.9 6.5 25.3 36.0 36.6

warm up 86.7 34.2 79.3 26.6 21.6 38.4 33.7 15.8 82.1 31.0 73.2 60.4 21.0 82.3 23.2 32.0 2.9 24.1 20.9 41.6 +5.0

stage 1

ST SCE PD SL mIoU gain
X 87.0 39.7 77.5 31.5 25.7 41.5 38.7 20.3 84.6 38.2 74.1 63.7 21.7 86.0 29.0 37.5 0.3 34.9 26.2 45.2 +8.6
X X 87.7 36.8 78.2 30.9 24.8 41.5 40.0 23.2 83.0 35.3 72.9 64.1 24.6 85.9 32.9 36.5 2.0 31.0 35.0 45.6 +9.0
X X X 93.2 56.7 84.1 40.4 37.5 39.5 44.1 35.1 87.1 43.2 80.3 65.8 29.8 87.7 29.6 41.9 0.0 44.4 52.6 52.3 +15.7
X X X 89.0 38.6 80.7 37.1 27.2 42.8 41.5 20.7 85.8 42.4 74.8 64.8 17.8 87.6 30.8 39.4 0.0 41.0 34.6 47.6 +11.0
X X X X 91.5 52.4 82.9 42.0 35.7 40.0 44.4 43.3 87.0 43.8 79.5 66.5 31.4 86.7 41.1 52.5 0.0 45.4 53.8 53.7 +17.1

stage 2

self
distill.

stage 1
init.

sup
init.

self-sup
init.

mIoU gain

X 90.0 57.4 81.8 42.0 40.2 43.8 50.3 50.9 87.6 42.6 80.0 69.2 32.9 87.8 45.5 56.9 0.0 46.0 55.4 55.8 +19.2
X X 91.4 53.3 83.4 41.3 37.8 43.9 53.0 47.9 88.3 46.1 79.9 70.5 33.2 89.0 48.4 54.6 0.0 50.5 56.7 56.3 +19.7
X X 91.0 50.2 83.1 40.1 39.8 43.5 51.9 48.1 87.9 45.9 78.5 69.6 34.3 87.9 41.3 56.6 0.0 51.7 57.1 55.7 +19.1
X X 89.4 56.5 81.3 46.3 42.7 45.1 52.2 51.3 88.5 47.0 82.9 69.3 36.5 87.4 46.0 57.5 0.6 45.9 54.5 56.9 +20.3

stage 3 X X 87.8 56.0 79.7 46.3 44.8 45.6 53.5 53.5 88.6 45.2 82.1 70.7 39.2 88.8 45.5 59.4 1.0 48.9 56.4 57.5 +20.9

Table 6: Ablation study of each proposed component. The whole training involves three stages, where knowledge distillation
can be applied in the last two stages. Here, ST stands for self-training, PD for prototypical denoising, and SL for structure
learning.



4. Qualitative comparison

road sidewalk building wall fence pole traffic light traffic sign vegetation n/a.
terrain sky person rider car truck bus train motorcycle bike

Input Before adaptation Conventional self-training ProDA

Figure 1: Qualitative results of semantic segmentation on the Cityscapes dataset. From left to right: input, before adaptation,
conventional self-training, ProDA.



road sidewalk building wall fence pole traffic light traffic sign vegetation n/a.
terrain sky person rider car truck bus train motorcycle bike

Input Ground truth Befor adaptation

AdaptSeg [5] CBST [11] BDL [3]

Seg-Uncertainty [10] CAG UDA [9] FADA [7]

ADVENT [6] CLAN [4] ProDA

Figure 2: Qualitative comparisons of different methods.
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Seg-Uncertainty [10] CAG UDA [9] FADA [7]

ADVENT [6] CLAN [4] ProDA

Figure 3: Qualitative comparisons of different methods.
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