
Appendix

A.1 Boundary Region Calculation

As mentioned in Section 3.3, we design a convolutional
operator to approximate the calculation of boundary regions
defined in Equation 1 for efficient implementation. In this
section, we give details of the convolutional operator.

Implementation of the approximation approach. To cal-
culate the boundary regionBk of instance maskMk, we use
a specific convolutional operator to calculate the foreground
boundary region and the background boundary region re-
spectively, where k denotes index of refinement stages in
the mask head. When calculating the background boundary
region, we first reverse binary values ofMk. Taking bound-
ary width of 1 as an example, kernel weights of the operator
are defined as a 3×3 matrix:−1 −1 −1

−1 8 −1
−1 −1 −1


Let Dk denotes the intermediate output of above convolu-
tional layer, and it has the same size as Mk. Values of Bk

are determined as follows:

Bk(i, j) =

{
1, if Dk(i, j) > 0
0, otherwise.

Specifically, the custom operator defined above executes
on a binary instance mask Mk, and it generates the binary
boundary mask Bk of Mk. If the operator calculates on a
pure foreground region (all ones) or background region (all
zeros), the output Dk(i, j) is zero. Only when the operator
calculates on a boundary region, the output Dk(i, j) can be
larger than zero. To calculate boundary regions with width
of 2, the operator can be defined as a 5×5 matrix:

−1 −1 −1 −1 −1
−1 −1 −1 −1 −1
−1 −1 24 −1 −1
−1 −1 −1 −1 −1
−1 −1 −1 −1 −1


To calculate boundary regions with larger width, the convo-
lutional operator can be defined similarly, making sure sum
of all weights is zero.

Comparisons between two implementations. We counted
the average IoU between boundary regions generated by the
definition and the approximation approach (Table 12). The
high IoU indicates our faster implementation generates sim-
ilar results with the definition. We also give examples of
boundary regions calculated by these two methods in Fig-
ure 7 respectively. As we can see, boundary regions gen-
erated by these two methods are visually near the same.

Output size IoU
28×28 0.76
56×56 0.75

112×112 0.80

Table 12: IoU between boundary regions from two imple-
mentations.

Boundary width AP AP? AP?
S AP?

M AP?
L

1 37.2 40.7 24.1 47.7 57.7
2 37.3 40.9 24.1 48.8 58.0
3 37.3 40.8 23.6 48.4 58.4

Table 13: Different boundary widths for boundary-aware
refinement.

Model Backbone AP AP? F1px F3px

Mask R-CNN X101-FPN 37.8 40.1 64.1 82.6
Mask R-CNN R50-FPN 34.7 36.8 62.0 80.6
RefineMask R50-FPN 37.3 40.9 69.6 84.9

+2.6 +4.1 +7.6 +4.3

Table 14: Comparison between Mask R-CNN and Refine-
Mask on COCO val2017 under different evaluation metrics.

In addition, experiments show that the effectiveness of the
boundary-aware refinement is not sensitive to the boundary
width (Table 13), which further indicates the subtle differ-
ences between these two implementations are not essential
to the final performance (the differences between bound-
ary regions with different boundary widths are obviously
much larger than the differences between results generated
by these two implementations).

A.2 Direct Measurement of Boundary Quality

In order to directly measure the boundary quality, we
also evaluated our method by the metric Fnpx, which is de-
signed by adapting the boundary F1 score proposed in [21]
from semantic segmentation to instance segmentation. For
each instance, we computed the boundary F1 score within n
pixels from object contour between the ground truth mask
and its positive prediction mask with maximum IoU. It was
ignored if there was no positive prediction for a given in-
stance. Results in Table 14 show that more gains are ob-
served on COCO, where refinemask even outperforms the
Mask R-CNN model with heavier backbone X101-FPN by
a large margin, further indicating that RefineMask improves
the boundary quality significantly.



Figure 7: Visualization results of the approximated boundary regions by convolutional kernel (the top row) and the defined
boundary regions by Equation 1 in Section 3.3 (the bottom row).

hidden fonts


