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1. Theorem Proofs
Theorem 1. Consider function fW(x) = f(Wx + b),
where the activation function f(·) is Lipschitz continuous
with Lipschitz constantLip(f). For any perturbation ξ with
norm ‖ξ‖, we have

EW ‖fW(x+ ξ)− fW(x)‖ ≤ Lip(f) · E‖W‖2 · ‖ξ‖,
(1)

where ‖W‖2 represents the spectral norm of matrixW , and
it is defined as

‖W‖2 = max
ξ∈Rn,ξ 6=0

‖Wξ‖
‖ξ‖

. (2)

Proof. As f(·) is Lipschitz continuous with Lipschitz con-
stant Lip(f), for i = 1, 2, . . . ,m, we have

EW,b(f (Wi,:x+Wi,:ξ + bi)− f (Wi,:x+ bi))
2

≤ EW (Lip(f) ·Wi,:ξ)
2

(3)

Take a sum for Equation (3) in each i, we have

EW,b‖f(W (x+ ξ) + b)− f(Wx+ b)‖
≤ EW ‖Lip(f) ·Wξ‖
= Lip(f) · E‖Wξ‖

(4)

Based on the definition of spectral norm, we have

‖Wξ‖ ≤ ‖W‖2 · ‖ξ‖. (5)

By combining Equations (4) and (5), we can obtain the
result of (1).

Theorem 2. Consider a Gaussian random matrix W ∈
Rm×n, where Wij ∼ N(Mij , A

2
ij) with M,A ∈ Rm×n.

Suppose G ∈ Rm×n is a zero-mean Gaussian random ma-
trix with the same variance, i.e., Gij ∼ N(0, A2

ij). We have

E‖W‖2

≤‖M‖2 + c

(
max

i
‖Ai,:‖+max

j
‖A:,j‖+ Emax

i,j
|Gij |

)
,

(6)

where c is a constant independent of W .

Proof. From our hypothesis we have

E‖W‖2 =E‖M +G‖2. (7)

From the triangle inequality of spectral norm,

‖M +G‖2 ≤ ‖M‖2 + ‖G‖2. (8)

As matrixM is a constant matrix and matrixG is a Gaus-
sian random matrix,

E(‖M‖2 + ‖G‖2) = ‖M‖2 + E‖G‖2. (9)

According to the Conjecture 1.2 in [1], for our mean-zero
Gaussian random matrix G, we have

E‖G‖2 ≤ c
(
max ‖Ai,:‖+max ‖A:,j‖+ Emax

i,j
|Gij |

)
(10)

Combining Equation (7)-(10) above, we prove the
proposition.

(a) Aleatoric Uncertainty (b) Epistemic Uncertainty

Figure S1. Uncertainties measured by Bayesian neural networks
on data without noise. Models trained with SEBR have lower un-
certainties on the predictions. Best viewed in color.
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(a) Aleatoric, FGSM (`∞ = 0.05) (b) Epistemic, FGSM (`∞ = 0.05) (c) Aleatoric, FGSM (`∞ = 0.2) (d) Epistemic, FGSM (`∞ = 0.2)

(e) Aleatoric, FGSM (`∞ = 0.3) (f) Epistemic, FGSM (`∞ = 0.3) (g) Aleatoric, PGD (`∞ = 0.05) (h) Epistemic, PGD (`∞ = 0.05)

(i) Aleatoric, PGD (`∞ = 0.1) (j) Epistemic, PGD (`∞ = 0.1) (k) Aleatoric, PGD (`∞ = 0.2) (l) Epistemic, PGD (`∞ = 0.2)

(m) Aleatoric, PGD (`∞ = 0.3) (n) Epistemic, PGD (`∞ = 0.3)

Figure S2. Uncertainties measured by Bayesian neural networks on data with adversarial noises. Models trained with SEBR have lower
uncertainties on the predictions. Best viewed in color.

2. Additional Experiments

Implementation Details. We use both the Bayesian MLP
model and the Bayesian CNN model in our experiments.
The Bayesian MLP model contains three fully-connected
layers, with neurons 784−1200−1200−10. The Bayesian
CNN structure on MNIST and Fashion-MNIST is LeNet-
5 [2]. The Bayesian CNN structure on CIFAR-10 and
CIFAR-100 is VGG16 [3]. The adversarial training on
MNIST dataset is implemented with FGSM noises, with
`∞ = 0.04.

Hyper-parameter Selection. As we show in Section 6.2
in the paper, the selection of the hyper-parameter λ is im-
portant. To find a suitable λ for each task, we search from
a series of . . . , 0.005, 0.01, 0.02, 0.05, 0.1, . . . . The set-
tings used in our comparison is λ = 0.02 for Bayesian
MLP model in MNIST dataset, λ = 0.01 for Bayesian CNN
model with LeNet architecture in MNIST dataset, λ = 0.05
for both the two models in Fashion-MNIST dataset, λ = 0.2
for Bayesian CNN with VGG architecture in CIFAR-10
dataset, and λ = 0.1 for Bayesian CNN with VGG archi-
tecture in CIFAR-100 dataset.
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Dataset Attack noise `∞ w/o. SEBR w. SEBR

CIFAR10

/ 0 91.65 92.09

FGSM
0.005 58.65 65.74
0.01 42.70 54.78
0.02 32.73 43.76

PGD
0.005 46.33 50.40
0.01 9.73 16.11
0.02 2.31 2.95

CIFAR100

/ 0 66.94 66.56

FGSM
0.002 45.96 47.67
0.01 17.08 21.18
0.02 12.52 15.97

PGD
0.002 44.72 46.85
0.01 2.91 5.04
0.02 0.95 1.95

Table S1. Experiments on Bayesian CNN with VGG architecture.

More Experiment Results. Further experiments about
SEBR of VGG architecture on CIFAR10 and CIFAR100
datasets are shown in Table S1. SEBR keeps effective on
the larger diverse datasets and more complex network ar-
chitecture.

More experiment results about the measured uncertain-
ties on models with SEBR and without SEBR are presented
in Figure S1 and S2. All results show that the models
trained with SEBR have lower uncertainties, including both
aleatoric uncertainties and the epistemic uncertainties, and
support our proposal.
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