
A. Model Architecture of VGG network

Figure A. 1 shows the VGG architecture we used in our
experiments.

Input

Conv(64, 3 × 3, 1)

BN/SWBN+ReLU

Conv(64, 3 × 3, 1)

BN/SWBN+ReLU

Max pooling 2 × 2

Conv(128, 3 × 3, 1)

BN/SWBN+ReLU

Conv(128, 3 × 3, 1)

BN/SWBN+ReLU

Max pooling 2 × 2

Conv(256, 3 × 3, 1)

BN/SWBN+ReLU

Conv(256, 3 × 3, 1)

BN/SWBN+ReLU

Max pooling(2 × 2)

Conv(512, 3 × 3, 1)

BN/SWBN+ReLU

Conv(512, 3 × 3, 1)

BN/SWBN+ReLU

Max pooling(2 × 2)

Conv(512, 3 × 3, 1)

BN/SWBN+ReLU

Average pooling(2× 2)

Dense(10)

Softmax

Figure A. 1: VGG architecture. Conv(c, k×k, s) represents a convolutional
layer with c channels, kernel of size k×k and stride s. Dense(h) represents a
fully connected layer with h neurons. BN/SWBN represents a normalization
layer. In our experiments, we used BN for baseline models and SWBN
for our proposed architectures. ReLU represent a rectified linear activation
function. Max (Average) pooling (d× d) represents max (average) pooling
layer with d× d kernel.

B. More Details on Whitening Criteria

B.1 Derivation of the update rule for CKL

Given two d-dimensional multivariate Gaussian distri-
butions pi ∼ N (~µi, Σi) and pj ∼ N (~µj , Σj), the
KL divergence between them can be simplified as:

DKL = 1
2 (log

det(Σj)
det(Σi)

+ (~µi − ~µj)
T Σ−1

j (~µi − ~µj)

+tr(Σ−1
j Σi)− d)

We want to compute the KL divergence between the data
distribution and the standard Gaussian distribution. Let pi
stand for the data distribution and pj for the standard Gaus-
sian distribution with ~µj = ~0 and Σj = I . Thus the KL
divergence becomes:

DKL =
1

2
(~µT

i ~µi + tr(Σi)− log det(Σi)− d)

Since the SWBN algorithm finds the whitening matrix W
on standardized random vector ~x ∈ Rd, where ~µi = E[~x] =
~0 and Σi = WE[~x~xT]WT = WΣ~xW

T , we eventually get
the CKL criterion:

CKL =
1

2
(tr(WΣ~xW

T)− log det(WΣ~xW
T)− d)

It is shown in [4] that by iteratively updating W using
the update rule in Eq. (3), W is optimized to become a
whitening matrix. Unlike the classical gradient approach
that involves actual gradients, the update rule is derived by
the relative gradient approach [4]. The reason why we do
not use the actual gradient of CKL to update W is due to its
high computational cost. The gradient of CKL with respect
to W is derived as follows: 1

∂CKL

∂W
=

1

2
(
∂

∂W
tr(WΣ~xW

T)− ∂

∂W
ln det(WΣ~xW

T))

=
1

2
(
∂

∂W
tr(WΣ~xW

T)− ∂

∂W
(ln det(W)

+ ln det(Σ~x) + ln det(WT)))

=
1

2
(2WΣ~x − 2(W−1)T)

= WΣ~x − (W−1)T

As we can see, this gradient formula involves matrix in-
version, which is usually computationally expensive and
numerically unstable. Therefore, we apply the relative gradi-
ent approach, which is introduced in [4], to avoid the matrix
inversion. Below we show how using the relative gradient
approach yields a more computationally efficient version of
the update formula.

Consider a scalar-valued function of a matrix f : Rd×d 7→
R, and we want to minimize the function f . In the classical
gradient approach, at each step, we find an additive pertur-
bation Γ s.t. f(W + Γ) − f(W) < 0 and Γ = −η ∂f(W)

∂W
with a small enough positive number η. In the relative gra-
dient approach, at each step, we aim to find a multiplicative
perturbation Γ s.t. f((I + Γ)W) − f(W) < 0. Gresele
et al. [6] has used the following expansion for finding the

1For the matrix gradient formulas in steps 1 and 2, please refer to [10].

relative gradient:

f((I + Γ)W) = f(W) +

〈
∂f(W)

∂W
,ΓW

〉
+ o(||W ||)

= f(W) +

〈
∂f(W)

∂W
WT ,Γ

〉
+ o(||W ||)

where 〈·, ·〉 stands for the inner product of matrices. The
direction of the steepest decent can be achieved by setting
Γ = −η ∂f(W)

∂W WT with a small enough positive number
η. Therefore, the additive term to update W is ΓW =

−η ∂f(W)
∂W WTW , with the relative gradient ∂f(W)

∂W WTW .
Thus, using the relative gradient, a more computationally

efficient version of the update rule of CKL is:

∂CKL

∂W
|relative = (WΣ~x − (W−1)T)WTW

= (WΣ~xW
T − I)W

B.2 Derivation of the update rule for CFro

The update formula for W using CFro can be directly de-
rived by computing the gradient matrix: 2

∂CFro

∂W
=

∂

∂W

1

2
||I −WΣ~xW

T ||Fro

=
∂

∂W

1

2
[tr((I −WΣ~xW

T)T (I −WΣ~xW
T)]

1
2

=
1

4||I −WΣ~xWT ||Fro
(−2

∂

∂W
tr(WΣ~xW

T)+

∂

∂W
tr(WΣ~xW

TWΣ~xW
T))

=
1

4||I −WΣ~xWT ||Fro
(4WΣ~xW

TWΣ~x − 4WΣ~x)

=
1

||I −WΣ~xWT ||Fro
(WΣ~xW

T − I)WΣ~x

B.3 Properties of CKL and CFro

To show the properties of CKL, we first prove the following
lemma.

Lemma 1.1. The set of symmetric positive-definite matrices
with bounded eigenvalues is convex. That is to say, let V be
a set of all d× d real matrices s.t. ∀W ∈ V:
(i) WT = W ;
(ii) ∀~x ∈ Rd, ~xTW~x > 0;
(iii) For eigenvalues λi ofW , there existm,M, 0 < m < M
that satisfy m ≤ λ1(W) · · · ≤ λd(W) ≤M , where λi(W)
stands for the i-th eigenvalue of W .
The set V of matrices is convex.

2For the matrix gradient formulas in steps 3 and 4, please refer to [10].

Proof. For Condition (i), let A,B ∈ V and a real number
α ∈ [0, 1]. Define C = αA+ (1− α)B. It is obvious that
CT = αAT + (1− α)BT = αA+ (1− α)B = C.

For Condition (ii), given any non-zero vector ~x, we have

~xTC~x = α~xTA~x+ (1− α)~xTB~x

If α = 0 or 1, then ~xTC~x is equal to either ~xTA~x or ~xTB~x,
which must be positive. Otherwise, if α ∈ (0, 1), both
~xTA~x > 0 and ~xTB~x > 0, which makes ~xTC~x > 0.

For Condition (iii), we need to prove the upper bound
and lower bound of eigenvalues do not change for affine
combination of two matrices in V. Let λ(X) be the set of
eigenvalues of a matrix X . For any matrices A and B in V
and a real number α ∈ [0, 1],

∀e ∈ λ(A), e ∈ [m,M] ∧ ∀e ∈ λ(B), e ∈ [m,M]

⇒ λ(α(A−mI)) ⊆ [0, α(M −m)]

∧ λ((1− α)B −mI) ⊆ [0, (1− α)(M −m)]

⇒ α(A−mI) is PSD ∧ (1− α)(B −mI) is PSD
⇒ α(A−mI) + (1− α)(B −mI) is PSD
⇒ (αA+ (1− α)B)−mI is PSD
⇒ λ((αA+ (1− α)B)−mI) ⊆ [0,∞)

⇒ λ((αA+ (1− α)B) ⊆ [m,∞)

Similarly, we have:

∀e ∈ λ(A), e ∈ [m,M] ∧ ∀e ∈ λ(B), e ∈ [m,M]

⇒ λ(α(A−MI)) ⊆ [α(m−M), 0]

∧ λ((1− α)(B −MI)) ⊆ [(1− α)(m−M), 0]

⇒ α(A−MI) is NSD ∧ (1− α)(B −MI) is NSD
⇒ α(A−MI) + (1− α)(B −MI) is NSD
⇒ (αA+ (1− α)B)−MI is NSD
⇒ λ(αA+ (1− α)B −MI) ⊆ (−∞, 0]

⇒ λ(αA+ (1− α)B) ⊆ (−∞,M]

where PSD and NSD stand for “Positive Semi-Definite” and
“Negative Semi-Definite”, respectively. Therefore, λ(αA+
(1− α)B) ⊆ [m,M].

In addition, we need the following lemma from [11].

Lemma 1.2. Let A be a convex open set and let f : A→ R
be a convex function. Then, f is ρ-Lipschitz over A if and only
if for all w ∈ A and v ∈ ∂f(w), we have that ||v|| ≤ ρ. [11]

Now we are ready to prove the following lemma of CKL’s
properties.

Lemma 1.3. Let Σ ∈ Rd×d be a real positive semi-definite
(PSD) symmetric constant matrix. For the whitening crite-
rion

CKL =
1

2
(tr(WΣWT)− ln det(WΣWT)− d)

defined over V, the followings hold: (i) CKL is convex. (ii)
CKL is ρ-Lipschitz.

Proof. For any W ∈ A, CKL can be simplified as:

CKL = 1
2
tr(WΣWT)︸ ︷︷ ︸

convex

+(− ln det(W)︸ ︷︷ ︸
convex

)− (
1

2
ln det(Σ) +

d

2︸ ︷︷ ︸
constant

)

Since Σ is a symmetric PSD matrix, the convexity of the
first term is proved in [3]. Because W is a positive definite
matrix, the second term in CKL is also convex as shown
in [3]. Thus, CKL is convex.

Since W is positive definite (PD) and Σ is PSD, all eigen-
values of these matrices are non-negative. Let λΣ

M be the
largest eigenvalue of Σ. There exists positive constants
K1 > 0, K2 > 0 s.t.

∥∥W−1
∥∥ ≤ K1

m , ‖W‖ ≤ K1M ,
and ‖Σ‖ ≤ K2λ

Σ
M . Recall ∂CKL

∂W = WΣ − (W−1)T , with
matrix norm inequalities, we have∥∥ ∂CKL

∂W

∥∥ =
∥∥WΣ− (W−1)T

∥∥ ≤ ‖W‖ ‖Σ‖+
∥∥W−1

∥∥
≤ K1K2MλΣ

M + K1
m

Let ρ = K1K2MλΣ
M + K1

m . Because
∥∥∂CKL

∂W

∥∥ ≤ ρ and CKL
is convex, with Lemma 1.2, CKL is ρ-Lipschitz.

Because CKL has these properties over the set V de-
fined in Lemma 1.1, one might expect CKL to work well
as a whitening criterion in a stochastic optimization setting.
However, there is one theoretical issue to ensure that CKL
preserves these properties. That is how to make the whiten-
ing matrix W have bounded eigenvalues, namely, satisfy
Condition (iii) of Lemma 1.1. Even though we have never
observed the maximum eigenvalue of W in SWBN to blow
up in practice, our solution to guarantee that the eigenval-
ues never explode is to constrain the norm of the whitening
matrix W . One simple solution is to set a threshold C > 0,
and compute tr(W) at each step during training. Every time
tr(W) > C is observed, then W is replaced by C

tr(W)W .
CKL is optimized by the relative gradient approach in

SWBN. This approach has been widely used in indepen-
dent component analysis, as discussed in [13]. Lately, it
was introduced to the field of unsupervised learning [6].
Relative gradient descent is a type of gradient descent algo-
rithm on Riemannian manifolds [1]. The convergence of the
stochastic relative gradient descent is proved and evaluated
in [1] [2].

Unfortunately, CFro does not have similar properties as
CKL. Clearly, CFro is a non-convex function. For exam-
ple, in a one dimensional case, with Σ~x = 1 and W as a
scalar variable w, CFro =

√
(1− w2)2 = |1− w2|, which

has two global minima at w = 1 and w = −1. Even if
w is constrained to be positive, namely, w belongs to one
dimensional V, d2

dw2CFro = −2 < 0 when w ∈ (0, 1), indi-
cating non-convexity. Similar deduction can be made for the
squared version of CFro, which is ||I −WΣ~xW

T ||2Fro.

C. Derivation of Back-propagation Algorithm

Let X ∈ Rd×n and X̂ ∈ Rd×n be the input and output
of an SWBN layer of a DNN, respectively. Given the loss
function L, the gradient matrix ∂L

∂X̂
of L, and ~µ, ~v, XS , XW

from Algorithm 1, we compute the gradient matrix ∂L
∂X by

the chain rule. Without the loss of generality, we derive the
formula of the partial derivative ∂L

∂X̂kl
as:

∂L

∂Xkl
= Σd

i=1
∂L

∂X̂il

∂X̂il

∂Xkl

∂X̂il

∂Xkl
=

∂

∂Xkl
(γiX

W
il + βi) = γi

∂XW
il

∂Xkl

∂XW
il

∂Xkl
=

∂

∂Xkl
Σd

t=1WitX
S
tl = Wik

∂XS
kl

∂Xkl

∂XS
kl

∂Xkl
=

∂

∂Xkl

Xkl − µk(Xkl)√
vk(Xkl) + ε

=
1√
vk + ε

+
∂XS

kl

∂vk

∂vk
∂Xkl

+
∂XS

kl

∂µk

∂µk

∂Xkl

∂XS
kl

∂vk
= −1

2
(Xkl − µk)(vk + ε)−

2
3

∂XS
kl

∂µk
= − 1√

vk + ε

∂vk
∂Xkl

=
2

n
(Xkl − µk)

∂µk

∂Xkl
= 1/n

D. Experimental Setup

D.1 ILSVRC-2012

For the ImageNet experiments, we used Stochastic Gradient De-
cent (SGD) with a batch size of 256 on 8 GPUs. The initial learning
rate, momentum, and weight decay are set to 0.1, 0.9 and 10−4, re-
spectively. We follow the same learning rate schedule as described
in [7]. We found that replacing all Batch Normalization (BN) layers
in the ResNeXt models with Stochastic Whitening Batch Normal-
ization (SWBN) layers slightly decrease the model’s test accuracy.
We conjecture that all-channel feature whitening probably nega-
tively affects the aggregated transformation [15] in the model where
the generalization improvement of ResNeXt originates. To fix this
issue, we replace the BN layers that do not have a direct influence
on the aggregated transformations, i.e. the first BN layer after the
first convolutional layer, as well as the last BN layers in all the
residual blocks.

D.2 Few-shot Classification

For the few-shot classification experiments, we re-implement the
Cross Attention Network (CAN) [8], and use a Pytorch meta
learning library called Torchmeta [5] for the Matching Network
(MN) [14] and the Prototypical Network (PN) [12]. For all the
whitening layers, due to the small sizes of the backbone networks,
we replace shifting parameters ~γ, which consist of only diagonal

elements of Γ, with dense matrices Γ as the task parameters, so the
backbone networks using the whitening layers have the equivalent
capacity as the networks using BN layers. For experiments of CAN,
we follow the experimental configurations as described in [8]. For
experiments of PN and MN, we select Adam [9] as the optimization
algorithm. Each of the experiments is run for 300 epochs with an
initial learning rate equal to 0.001. The learning rate is halved at
every 30 epochs. Each training epoch consists of 100 episodes. To
get accurate test accuracies, we evaluate all the trained models on
2000 test episodes generated from the test (a.k.a. query) datasets.
For each test episode, 30 test samples for each class are randomly
sampled from the test dataset.

References
[1] P.-A. Absil, R. Mahony, and R. Sepulchre. Optimization

algorithms on matrix manifolds. Princeton University Press,
2009. 3

[2] S. Bonnabel. Stochastic gradient descent on riemannian man-
ifolds. IEEE Transactions on Automatic Control, 58(9):2217–
2229, 2013. 3

[3] S. Boyd and L. Vandenberghe. Convex optimization. Cam-
bridge university press, 2004. 3

[4] J.-F. Cardoso and B. H. Laheld. Equivariant adaptive
source separation. IEEE Transactions on signal processing,
44(12):3017–3030, 1996. 1

[5] T. Deleu, T. Würfl, M. Samiei, J. P. Cohen, and Y. Ben-
gio. Torchmeta: A Meta-Learning library for PyTorch, 2019.
Available at: https://github.com/tristandeleu/pytorch-meta. 3

[6] L. Gresele, G. Fissore, A. Javaloy, B. Schölkopf, and
A. Hyvärinen. Relative gradient optimization of the jaco-
bian term in unsupervised deep learning. In NeurIPS 2020
Thirty-fourth Conference on Neural Information Processing
Systems, 2020. 1, 3

[7] K. He, X. Zhang, S. Ren, and J. Sun. Deep residual learning
for image recognition. In Proceedings of the IEEE conference
on computer vision and pattern recognition, pages 770–778,
2016. 3

[8] R. Hou, H. Chang, M. Bingpeng, S. Shan, and X. Chen. Cross
attention network for few-shot classification. In Advances
in neural information processing systems, pages 4003–4014,
2019. 3, 4

[9] D. P. Kingma and J. Ba. Adam: A method for stochastic
optimization. arXiv preprint arXiv:1412.6980, 2014. 4

[10] K. Petersen and M. Pedersen. The matrix cookbook. Technical
University of Denmark, Nov 2012. 1, 2

[11] S. Shalev-Shwartz and S. Ben-David. Understanding machine
learning: From theory to algorithms. Cambridge university
press, 2014. 2

[12] J. Snell, K. Swersky, and R. Zemel. Prototypical networks
for few-shot learning. In Advances in neural information
processing systems, pages 4077–4087, 2017. 3

[13] S. Squartini, F. Piazza, and A. Shawker. New riemannian
metrics for improvement of convergence speed in ica based
learning algorithms. In 2005 IEEE International Symposium
on Circuits and Systems, pages 3603–3606. IEEE, 2005. 3

[14] O. Vinyals, C. Blundell, T. Lillicrap, D. Wierstra, et al. Match-
ing networks for one shot learning. In Advances in neural
information processing systems, pages 3630–3638, 2016. 3

[15] S. Xie, R. Girshick, P. Dollár, Z. Tu, and K. He. Aggre-
gated residual transformations for deep neural networks. In
Proceedings of the IEEE conference on computer vision and
pattern recognition, pages 1492–1500, 2017. 3

