The Supplementary Materials for
UnrealPerson: An Adaptive Pipeline towards Costless Person Re-identification

Tianyu Zhang, Lingxi Xie, Longhui Wei, Zijie Zhuang, Yongfei Zhang, Bo Li, Q1 Tian

In the supplementary materials, we introduce more de-
tails of our data synthesis system and show some high-
resolution synthesized images. We present detailed steps
in Fig. 1 and elaborate in the following sections.

A. Preparing Human Models and Animations

Human model production is conducted with Makehu-
man [1] and Mixamo [2]. Makehuman is an open-source
system and has many free assets provided by the commu-
nity. Makehuman supports generating human models with
adjustable parameters, such as age, weight, height, body
shape, gender, ethnicity, hair, and so on. Based on a com-
munity plugin, massproduce, we refine it to generate hu-
man models with randomized clothes and accessories. We
download all available clothing assets provided by Make-
human community and, after filtering out uncommon or un-
suitable ones, we classify each clothing into fine-grained
categories, e.g., female-upper clothes, male-full clothes, fe-
male/male hats, efc. The numbers of each clothing type we
use in our data synthesis process are shown in Tab. 1.

After obtaining those 3D human models, we use Mix-
amo, an online platform for animating static characters, to
produce a rigged human skeleton that fits most of the ani-
mations provided on Mixamo. Note that all human models
share the same skeleton, although they may differ in height
and body shape. Therefore, we just need to animate one
3D model on Mixamo, and the rigged skeleton naturally fits
all other 3D models. In other words, we are able to obtain
various animations that can be used on all human models.

3D Human ‘
Mass Production

Surveillance
Simulation

Type Male Female M & F Notes

Headwear 6 5 9
Upper clothes 11 30 12

hat, flower, earphone, hairpin
shirt, sweater, blouse, vest

Lower clothes 7 26 21 pants, skirt, shorts, jeans, tights
Full clothes 9 65 1 robe, dress, outfit

Outer clothes 1 3 2 jacket, coat, long cardigan
Shoes 2 6 15 -

Glasses 0 0 7 -

Scarf 0 0 2 -

Mask 0 0 3 -

Backpack 0 0 1 -

Handheld 0 0 4 handbag, umbrella, suitcase

Table 1. The numbers of clothes we use in data synthesis.

This saves us much effort animating static models, which
usually costs a lot of time and money. We choose 4 walking
and 2 idling animations for our 3D humans. In fact, there
are hundreds of animations on Mixamo, including running,
talking, arguing, crawling, efc, which can be further added
to our system and enhance the reality of synthesized RelD
data.

B. Preparing Clothing Textures

One of the major differences that advances the perfor-
mance of our synthesized data is that we use real-world
clothing textures instead of generated textures. The diver-
sity of ready-made clothes is not enough to support large-
scale RelD datasets. To address this issue, we change col-
ors and patterns on clothes to enrich the appearance distri-
bution of clothing templates. The appearance of clothes is

» Automatic Annotation

xR D

(a) Human models, animations, clothing textures

(b) Walking in virtual scenes

(c) Data collection and annotation

Figure 1. The steps of our data synthesis system.

defined by texture images. A pre-defined mapping func-
tion will be applied to 3D models to show the texture image
on the clothes region. To keep realistic, we use real-world
clothing images of two datasets, Clothing-co-parsing [7]
and DeepFashion [4], as the texture images. Specifically,
image patches are cropped from clothing images according
to pixel-level segmentation annotation. The largest rect-
angle of each clothing area is cropped as a patch. These
patches are also classified into several categories based on
the clothing type. The extra texture images are only applied
to corresponding texture slots on 3D humans. For example,
if a texture image is cropped from T-shirts, it will only be
used in upper body clothes of 3D humans. In total, we ob-
tain more than 10,000 clothing textures. Later, they will be
used on human models in Unreal Engine 4.

So far, all steps above, including preparing human mod-
els, animations, and clothing textures, are totally free.
Moreover, if not necessary, there is no need to repeat the
steps of producing human models and animations. Other
foreground variations, such as poses and walking trajecto-
ries, are all implemented in Unreal Engine 4 [3].

C. Surveillance Simulation in UE4

In fact, the surveillance simulation is implemented in
the same way as game development. In Unreal Engine 4,
the scripts controlling game objects and scenes are imple-
mented in Blueprints. We design an actor blueprint for
our surveillance simulation. A list of 3D human models is
contained in the actor blueprint, together with several lists
of clothing textures. Each actor first initializes its appear-
ance by selecting assets from the human model list and tex-
ture lists according to the input identity index. The paths
that actors walk along consist of a series of target points in
the game scene. The actors automatically find paths to the
next target point once arrived, otherwise teleport to the next
point if stuck for a long time. With our customized actor
blueprint, we can generate thousands of different identities
with this actor blueprint by inputting different identity in-
dexes and target point lists.

Moreover, we implement a level blueprint in UE4. It
has some useful functions, which we can call anytime dur-
ing the game running. The level blueprint is in charge of
actor spawning/deleting, game pausing/resuming, and sky-
light changing. We purchase four scenes from the unreal
engine marketplace (as shown in Fig. 2). For a new virtual
scene, we only conduct two steps to fit our level blueprint.
First, we build the navigation on this scene for our actors to
find paths. Second, we select some target points and assign
spawning areas. In summary, it is very convenient to add
new identities and new virtual scenes in our data synthesis
system.

(c) Scene 3: Modular Building (d) Scene 4: Supermarket

Figure 2. The four scenes used in our synthesized data.

D. Data Collection and Annotation

We design an automatic python script based on Un-
realCV [5, 6], a plugin that interacts with UE4. This
script sends commands to spawn actors in the virtual
scenes. Then, they will follow the pre-defined paths walk-
ing around. The script can control the camera location and
rotation, and collect RGB images together with pixel-level
instance segmentation images. UE4 regards every game ob-
ject as an instance, and UnrealCV provides segmentation as
a display mode, which we can easily use as our annotation
to separate different identities. Human models are spawned
and deleted by group, e.g., 200 identities as a group, to sim-
ulate crowdedness in the real scenarios. At each camera lo-
cation, we change the skylight occasionally. Once we start
the UE4 game and the script, everything will be done au-
tomatically. This data collection and annotation process is
costless and fast compared to real-world data annotation.

References

[1] Makehuman community. Makehuman, 2020. http://
www .makehumancommunity.org. 1

[2] Adobe Systems Incorporated. Mixamo, 2020. https://
www .mixamo.com. 1

[3] Epic Games Incorporated. Unreal engine, 2020. https:
//www.unrealengine.com. 2

[4] Ziwei Liu, Ping Luo, Shi Qiu, Xiaogang Wang, and Xiaoou
Tang. Deepfashion: Powering robust clothes recognition and
retrieval with rich annotations. In CVPR, 2016. 2

[5] Weichao Qiu and Alan Yuille. Unrealcv: Connecting com-
puter vision to unreal engine. In ECCV, 2016. 2

[6] Weichao Qiu, Fangwei Zhong, Yi Zhang, Siyuan Qiao, Zihao
Xiao, Tae Soo Kim, and Yizhou Wang. Unrealcv: Virtual
worlds for computer vision. In ACMMM, 2017. 2

[71 Wei Yang, Ping Luo, and Liang Lin. Clothing co-parsing by
joint image segmentation and labeling. In CVPR, 2013. 2

http://www.makehumancommunity.org
http://www.makehumancommunity.org
https://www.mixamo.com
https://www.mixamo.com
https://www.unrealengine.com
https://www.unrealengine.com

