
Appedix for VinVL: Revisiting Visual Representations
in Vision-Language Models

A. Qualitative study of three pre-trained vision
models

We apply three (pre-trained) object detection models on
the image in Figure 1 and list their detection results for a
more detailed comparison.

Detections from X152-FPN trained on Open Images V5.
See Figure 2:
Surfboard; Surfboard; Surfboard;
Surfboard; Man; Human leg; Human leg;
Swimwear; Swimwear; Shorts; Shorts;
Boy; Human arm.

Detections from R101-C4 trained on VG by Anderson
et al. [2]. There are obviously wrong detections, marked in
red. See Figure 3 (top):
black shorts; young, shirtless,
standing, barefoot, surfing, little,
playing boy; shirtless, standing,
barefoot, walking, wet, surfing, young
man; tan, bare, shirtless back; blue,
clear, cloudy, hazy, light blue sky;
young, shirtless, standing, surfing,
barefoot, little boy; brown, short,
wet, blond hair; brown, short, wet,
blond hair; small, crashing wave;
white, wet surfboard; white, crashing,
big, rolling wave;
wet, tan surfboard; green, blue fin;
blue, calm, choppy, wavy, ocean,
splashing, foamy, water, rough, sandy,
wet ocean; wet, calm, sandy,
splashing, wavy water; white, wet
surfboard; bare, wet foot;
blue, colorful, multi colored, floral
shorts; calm, choppy, water, rough,
foamy, wavy water; distant, rocky, hazy
mountains; standing, shirtless,
young, barefoot, wet, surfing, walking,
smiling boy; calm ocean; distant, rocky
mountain; white, bare, wet surfboard;
wet, sandy, calm, tan beach; gray,
big rock; blue, calm background; wet,
brown, tan, sandy sand;
wet shadow; blue, colorful, floral,
multi colored swim trunks;
yellow, plastic hand.

Detections from our pre-trained X152-C4 model pre-
trained on four datasets and fine-tuned on VG. There
are some repetitive detections, but no obvious wrong
detections. See Figure 3 (bottom):
blue, green fin; young, barefoot,

shirtless, standing, surfing, smiling,
little, playing, looking, blond boy;
young, barefoot, standing, shirtless,
smiling, surfing, blond, playing,
looking, little, walking, riding boy;
shirtless, barefoot, standing,
young, smiling, surfing, walking,
wet, playing man; bare, wet foot;
black, white surfboard; small, large,
white, crashing, big, water, rolling,
splashing, rough, foamy wave; bare, wet
foot; dark, black, wet, cast shadow;
blue, clear, hazy, cloudy, cloudless
sky; black, gray, white, raised
surfboard; black, wet, short short;
brown, short, blond, wet, curly, wavy
hair; distant, brown, large, rocky,
hazy, big mountain; brown, short, dark,
blond, wet hair; blue, white, calm,
wavy, choppy, ocean, splashing, water,
rough, clear, shallow water; bare,
tan, light, beige back; black, blue,
wet surfboard; small, dark, water,
crashing, rolling, splashing, big
wave; wet, white, sandy, tan surfboard;
blue, colorful, floral, multi colored,
patterned trunk; wet, brown, sandy, tan
sand; white, blue, calm, foamy, choppy,
splashing, wavy, ocean, rough, water,
clear, shallow water; wet, brown,
sandy, calm, tan, shallow, smooth,
muddy, rough beach; black, white, young
board; shirtless, young, standing,
barefoot, smiling, surfing, looking,
walking, playing boy; blue, calm,
choppy, wavy, ocean, clear, rough,
splashing, water, foamy, shallow,
rippled ocean; yellow, gold bracelet;
white, silver, black logo; wet, bare,
bent, tan, crossed, hairy, short,
skinny, back, muscular, extended,
outstretched leg; black, gray, white
board; brown, distant, large, rocky,
big hill; brown, short, blond, wet,
curly head; red, black logo; bare,
raised, extended, holding, open, up,
bent, outstretched hand; black, wet
swim trunks; bare, wet, bent, tan,
crossed, skinny, short, back, muscular
leg; wet, brown, muddy, sandy, tan,
shallow reflection.

11



Figure 2: Predictions from X152-FPN trained on OpenImages. Test image: COCO test2015 000000028839

B. OSCAR+ pre-training

B.1. Pre-training Corpus

Table 17 shows the statistics of image and text of the pre-
training corpora. In our ablation study, we use corpora of
three different sizes: ‘Small’, ‘Medium’, ‘Large’. Different
from OSCAR [20], we make use of image tagging datasets
OpenImages, by generating captions using OSCAR’s image
captioning model to form triplets of (generated caption, im-
age tags, image features) for OSCAR+ pre-training. By self-
training technique, our pre-training corpora can be scaled to
a much larger amount by making use of large-scale image
tagging datasets, e.g., OpenImages (9M) and YFCC (92M).

B.2. OSCAR+ pre-training objectives

Masked Token Loss: A Loss Mimics Image Captioning.
The word tokens of image captions (questions)w and word
tokens of object tags (answers) q share the same linguistic
semantic space, and the Masked Token Loss (MTL) is ap-
plied on tokens of both w and q. We define the discrete
token sequence as h , [w, q], and apply the Masked To-
ken Loss (MTL) for pre-training. At each iteration, we ran-

domly mask each input token in h with probability 15%,
and replace the masked one hi with a special token [MASK].
The goal of training is to predict these masked tokens based
on their surrounding tokens h\i and image features v by
minimizing the negative log-likelihood:

LMTL = −E(v,h)∼D log p(hi|h\i,v) (5)

This is the same MTL as in OSCAR [20] and similar to
the masked language model used by BERT. The masked
word or tag needs to be recovered from its surrounding con-
text, with additional image information to help ground the
learned word embeddings in the vision context.

3-way Contrastive Loss: A Loss Mimics Text-Image Re-
trieval and Visual Question Answering Simultaneously.
We present our 3-way contrastive loss in Section 3.2 in the
main paper.

B.3. Ablation of the two new techniques

Effect of self-training: Leveraging Image Tagging data.
In Figure 4, we show the effect of self-training by mak-
ing use of tagging data in OSCAR+, by fine-tuning OS-

12



Figure 3: Predictions from R101-C4 trained on VG from [2] (top), X152-C4 pre-trained on 4 OD datasets and finetuned on
VG (bottom). Test image: COCO test2015 000000028839

13



Small 0.22M Images, 2.5M QAs, 0.7M captions

Medium 1.89M Images, 2.5M QAs, 0.7M captions, 1.67M pseudo-captions

Large 5.65M Images, 2.5M QAs, 4.68M captions, 1.67M pseudo-captions

Source VQA GQA VG-QA COCO Flicker30k OpenImages CC SBU
(train) (bal-train) (train) (train) (train) (od train) (train) (all)

Image/Text 83k/545k 79k/1026k 87k/931k 112k/559k 29k/145k 1.67M/1.67M 3.1M/3.1M 875k/875k

w, q,v Question, Answer, ImageFeatures (Generated) Caption, (Generated) ImageTags, ImageFeatures

Table 17: Statistics of the pre-training corpus.

CAR+ pre-training checkpoints on VQA. Compared with
“OSCAR+, Small; VinVL” (green), “OSCAR+, Medium;
VinVL” (yellow) adds the 1.7M OpenImages Tagging data
into pre-training and its performance gets improved signif-
icantly, demonstrating the effect of self-training by making
use of tagging data. As baselines, we also provide perfor-
mance of OSCAR and OSCAR+ with image features from
[2], which clearly demonstrates that the new image features
pre-trained by VinVL matter significantly in the VL pre-
training and VL downstream tasks.

Effect of the new 3-way contrastive loss. As illustrated
in Table 3, with the new 3-way contrastive loss, the VQA
performance is the same as the OSCAR pre-training, while
the Text-Image Retrieval performance improves signifi-
cantly compared with the OSCAR pre-training.

Overall improvement from OSCAR to OSCAR+. We
point out that the improvement from OSCAR to OSCAR+
with image features from [2] is minor, because (1) we
only add 1.7M OpenImages’ tagging data to enlarge the
pre-training corpus, which is a small portion compared
with OSCAR’s original pre-training corpus (i.e., Large\OI,
3.98M images and 7.18M image-caption pairs), and (2) the
new 3-way contrastive loss has more significant improve-
ments in Text-Image Retrieval tasks than that in the VQA
task, as illustrated in Table 3. We would expect much more
significant improvements when we scale up the OSCAR+’s
pre-training corpus to a much larger scale by adding large
scale image tagging datasets, e.g., OpenImages (9M) and
YFCC (92M).

C. Downstream Tasks Fine-tuning
We follow the downstream task fine-tuning recipes in

OSCAR [20].

C.1. VQA

Given an image and a question, the task is to select
the correct answer from a multi-choice list, it requires the

model to answer natural language questions based on an
image. Here we conduct experiments on the widely-used
VQA v2.0 dataset [8], which is built on the MSCOCO [24]
images. Following [2], for each question, the model picks
the corresponding answer from a shared set of 3, 129 candi-
dates.

When fine-tuning on the VQA task, the input sequence
contains the concatenation of a given question, object tags
and object region features, and then the [CLS] output from
OSCAR+ is fed to a task-specific linear classifier for answer
prediction. Similarly as the literature [2], we treat VQA as
a multi-label classification problem – assigning a soft target
score to each answer based on its relevancy to the human
answer responses, and then we fine-tune the model by min-
imizing the cross-entropy loss computed using the predicted
scores and the soft target scores. During inference, we sim-
ply use Softmax for answer prediction.

For VQA training, we random sample a set of 2k im-
ages from the MS COCO validation set as our validation
set, the rest of images in the training and validation are used
in the VQA fine-tuning. For the OSCAR+B model, we fine-
tune for 25 epochs with a learning rate of 5e−5 and a batch
size of 128. For the OSCAR+L model, we fine-tune for 25
epochs with a learning rate of 3e−5 and a batch size of 96.

C.2. GQA

Similarly as VQA, GQA tests the reasoning capability of
the model to answer a question. We conduct experiments on
the public GQA dataset [12]. For each question, the model
chooses an answer from a shared set of 1, 852 candidates.
Our fine-tuning procedure is following Oscar [20, 3], which
first fine-tunes the model on unbalanced “all-split” for 5
epochs with a learning rate of 5e−5 and a batch size of 128,
and then fine-tuned on the “balanced-split” for 2 epochs.

C.3. Image Captioning

An image captioning model generates a natural language
description for a given image. To enable sentence gener-
ation, we fine-tune OSCAR+ using the seq2seq objective.

14



Figure 4: Effect of OSCAR+ pre-training corpus size and effect of self-training by making use of tagging data in OSCAR+.
Each curve, with legend “VLP, Corpus; VisionFeature”, denotes a VLP experiment where the VLP method is either OSCAR
or OSCAR+, the VLP pre-training Corpus is Small/Medium/Large (defined in Table 17), and VisionFeature is either our new
vision features (VinVL for short) or those from [2] ([2] for short). X-axis denotes the pre-training iterations of OSCAR+
checkpoints. Y-axix is the vqa-dev accuracy of a VQA model initialized from the corresponding pre-training checkpoint and
fine-tuned with a fixed scheme. Compared with “OSCAR+, Small; VinVL” (green), “OSCAR+, Medium; VinVL” (yellow)
adds the 1.7M OpenImages Tagging data into the pre-training and its performance gets improved significantly, demonstrating
the effect of self-training by making use of tagging data. The “OSCAR+, Large; VinVL” (blue) further scales up the pre-
training corpus by adding Google Conceptual Captions and SBU datasets with generated tags and its performance gets
further improved, demonstrating the effect of OSCAR+ pre-training corpus size. As baselines, we also provide performance
of OSCAR and OSCAR+ with image features from [2], which clearly demonstrates that our new image features (VinVL)
matter significantly in the VL pre-training and VL downstream tasks.

The input samples are processed to triples consisting of im-
age region features, captions, and object tags, in the same
way as that during the pre-training. We randomly mask
out 15% of the caption tokens and use the corresponding
output representations to perform classification to predict
the token ids. Similar to previous works [20, 44], the self-

attention mask is constrained such that a caption token can
only attend to the tokens before its position to simulate a
uni-directional generation process. Note that all caption to-
kens will have full attentions to image regions and object
tags but not the other way around.

During inference, we first encode the image regions, ob-

15



ject tags, and a special token [CLS] as input. Then the model
starts the generation by feeding in a [MASK] token and se-
lecting a token from the vocabulary based on the likelihood
output. Next, the [MASK] token in the previous input se-
quence is replaced with the selected token and a new [MASK]
is appended for the next word prediction. The generation
process terminates when the model outputs the [SEP] token.
We use beam search (i.e. beam size = 5) [2] in our experi-
ments and report our results on the COCO image captioning
dataset.

Though the training objective (i.e. seq2seq) for im-
age captioning is different from that used in pre-training
(i.e. bidirectional attention-based masked token loss),
we directly fine-tune OSCAR+ for image captioning on
COCO without additional pre-training on Conceptual Cap-
tions [31]. This is to validate the generalization ability of
the OSCAR+ models for generation tasks. We use the same
Karpathy split [14]. For the OSCAR+B model, we fine-tune
with cross-entropy loss for 30 epochs with a batch size of
256 and an initial learning rate of 1e−5 and then with CIDEr
optimization [29] for 10 epochs with a batch size of 128 and
initial learning rate of 2e−6. We compare with several exist-
ing methods, including BUTD [2], VLP [44], AoANet [10],
OSCAR [20].

C.4. NoCaps

Novel Object Captioning [1] extends the image caption-
ing task, is to test models’ capability of describing novel
objects from the Open Images dataset [16] which are not
seen in the training corpus. Following the restriction guide-
line of NoCaps, we train OSCAR+ on COCO without the
initialization from pre-training, so no additional image-text
pairs are used for training except COCO.

Since NoCaps images are collected from Open Images,
we train an object detector using the Open Images training
set and apply it to generate the tags. We conduct exper-
iments from BERT model directly without pre-training as
required by the task guidelines. For the OSCAR+B model,
we train 30 epochs with a batch size of 256 and learning rate
1e−4; further we perform CIDEr optimization with learning
rate 5e−6 and batch size 112 for 10 epochs. During infer-
ence, we use constrained beam search for decoding. We
compare OSCAR+ with OSCAR [20] on this task.

C.5. Image-Text Retrieval

There are two sub-tasks: image retrieval and text re-
trieval, depending on which modality is used as the re-
trieved target. Both tasks calculate a similarity score be-
tween an image and a sentence, which heavily relies on the
cross-modal representations.

Following Oscar [20], we formulate the retrieval as a bi-
nary classification problem, where given an aligned image-
text pair, we randomly select a different image or a different

sentence to form an unaligned pair. The final representa-
tion of [CLS] is used as the input to the classifier to predict
whether the given pair is aligned or not. In the testing stage,
the probability score is used to rank the given image-text
pairs of a query.

Following [18], we report the top-K retrieval results on
both the 1K and 5K COCO test sets. We adopt the widely
used Karpathy split [14] on the COCO caption dataset [24]
to conduct our experiments. Specifically, the dataset con-
sists of 113, 287 images for training, 5, 000 images for val-
idation, and 5, 000 images for testing. Each image is as-
sociated with 5 human-generated captions. For the OS-
CAR+B model, we fine-tune with a batch size of 256 for 40
epochs. The initial learning rate is set to 2e−5 and linearly
decreases. For the OSCAR+L model, we fine-tune with a
batch size of 128 for 40 epochs. The initial learning rate is
set to 1e−5 and linearly decreases. We use the validation
set for parameter tuning. We compare with several exist-
ing methods, including DVSA [14], VSE++ [5], DPC [43],
CAMP [38], SCAN [17], SCG [32], PFAN [37], Unicoder-
VL [18], 12-in-1 [26], UNITER [4].

C.6. NLVR2

Given a pair of images and a natural language, the goal
of NLVR2 [34] is to determine whether the natural language
statement is true about the image pair. For NLVR2 fine-
tuning, we first construct two input sequences, each con-
taining the concatenation of the given sentence (the natural
language description) and one image, and then two [CLS]
outputs from OSCAR+ are concatenated as the joint input
for a binary classifier, implemented by an MLP.

For the OSCAR+B model, we fine-tune for 20 epochs
with learning rate {2e−5, 3e−5, 5e−5} and a batch size of
72. For the OSCAR+L model, we fine-tune for 20 epochs
with learning rate of {2e−5, 3e−5} and a batch size of 48.

D. More on the Effect of the Object-Attribute
Vocabulary Size: disentangling the effects
of region proposals and model weights

In Section 4.2, we demonstrate that the more diverse the
visual concepts (object and attribute vocabularies) are, the
better the visual region features for VL tasks. The better
performance may come from the more diverse proposed re-
gions where the region features are extracted (see the com-
parison in Figure 1, “region” for short), or from the bet-
ter model weights that can produce better high-dimensional
region representation even for the same region (“model”
for short). In this section, we disentangle effects of region
proposals and model weights, by performing synthetic ex-
periments in which we use region proposals from one vi-
sion model and model weights from another vision model.
Our results show that both the region proposals and model

16



Method in-domain near-domain out-of-domain overall in-domain near-domain out-of-domain overall
CIDEr SPICE CIDEr SPICE CIDEr SPICE CIDEr SPICE CIDEr SPICE CIDEr SPICE CIDEr SPICE CIDEr SPICE

Validation Set Test Set
UpDown+ 79.3 12.4 73.8 11.4 71.7 9.9 74.3 11.2 76.0 11.8 74.2 11.5 66.7 9.7 73.1 11.2
OSCARB* 83.4 12.0 81.6 12.0 77.6 10.6 81.1 11.7 81.3 11.9 79.6 11.9 73.6 10.6 78.8 11.7
OSCARL* 85.4 11.9 84.0 11.7 80.3 10.0 83.4 11.4 84.8 12.1 82.1 11.5 73.8 9.7 80.9 11.3
Human [1] 84.4 14.3 85.0 14.3 95.7 14.0 87.1 14.2 80.6 15.0 84.6 14.7 91.6 14.2 85.3 14.6
VIVO* [9] 92.2 12.9 87.8 12.6 87.5 11.5 88.3 12.4 89.0 12.9 87.8 12.6 80.1 11.1 86.6 12.4

VinVL* 96.8 13.5 90.7 13.1 87.4 11.6 90.9 12.8 93.8 13.3 89.0 12.8 66.1 10.9 85.5 12.5
VinVL+VIVO 103.7 13.7 95.6 13.4 83.8 11.9 94.3 13.1 98.0 13.6 95.2 13.4 78.0 11.5 92.5 13.1

Table 18: NoCaps evaluation results. All the models are trained on COCO without additional image-caption pairs following
the restriction of NoCaps. (UpDown+ is UpDown+ELMo+CBS, the models with * is +SCST+CBS, VinVL+VIVO is with
SCST only.)

Figure 5: Overall comparison of vocabulary effect on VQA.
X-axis: how the R50-C4 model is trained; Y-axis: how the
feature is extracted (grid or region features, different kinds
of boxes to extract region features). All region features have
maximal 50 regions. The top row “Mean” is the average
over all rows, showing the overall quality of different vision
models. The far-right column “Mean” is the average over
all columns, showing the overall quality of different feature
extraction methods.

weights matter for VL tasks.

D.1. Disentangling the effects of region proposals
and model weights on R50-C4

As in Section 4.2, We train vision models v =
Vision(Img) on different datasets, i.e., OpenImages with
500 object classes (OI:O500), standard ImageNet with
1K classes (ImageNet:O1000), Visual Genome with 317
object classes (VG-obj), Visual Genome with 1594 ob-
ject classes (VG:O1594), VG with 1594 object classes
and 524 attribute classes (VG:O1594A524), pretrain on
the merged 4 datasets and finetune on VG:O1594A524
(4Sets→VG:O1594A524). For each model, we also try dif-
ferent ways to extract features: (1) region features from dif-
ferent models’ proposed regions (same notations with mod-
els) where each image has maximal 50 region features, and
(2) grid features where we use all grid features (Grid-273)
or randomly sampled 50 grid features (Grid-50) for each

image. We present the results of these model-region cross-
combination experiments in Figure 5. We also present the
mean accuracy over all box types to obtain a robust rank-
ing of different checkpoints and the mean accuracy over
all checkpoints to obtain a robust ranking of different box
types. We have the following observations:

• The richer the object vocabulary is, the better for
VQA: OI:500 ≈ VG-obj:O317 < ImageNet:O1000 <
VG:O1594.

• Attribute information is crucial to VL tasks: all features
trained with attributes (Columns with VG:O1594A524)
are significantly better than those without attributes.

• Even for small vision backbone R50, vision pre-training
makes vision features better: Column
“4Sets→VG:O1594A524” are better than all other
columns. Notice that the vision pre-training improves
both the region features and the grid features.

• It is crucial to extract features from semantically diverse
regions: regions from OI and VG-obj are significantly
worse than all other regions, and is even worse than grid
features.

• Grid features perform worse than region features with
regions proposed by VG models. By comparing Row
“Grid-273” with rows with VG regions, it seems hope-
ful to close this gap while paying more hardware memory
and computational cost in cross-modal models VL. It is
three times slower to train the “Grid-273” models than
training models with region features.

In Figure 6, instead of just showing one final number,
we provide the mean evaluation curves along training tra-
jectories to demonstrate the ranking, as an even more robust
evidence. These results further confirm the conclusions we
draw in Section 4.2.

D.2. Disentangling the effects of region proposals
and model weights on the SoTA model

In Table 19, we alternate the combination of region pro-
posals and model weights, and evaluate them on VQA.
As we can see, the improvement of using boxes from the
R101-C4 model [2] to extract features from our X152-

17



Figure 6: Left: comparison of object vocab and attribute vocab, average over all types of bounding boxes. Right: comparison
of feature extraction methods, average over all types of pre-trained vision models. X-axis is the number of iterations when
we take the checkpoint for evaluation. Y-axis is the VQA accuracy on our vqa-dev.

C4 model is much bigger than that of using boxes from
our X152-C4 model to extract features from the R101-C4
model [2], indicating pre-trained model weights are more
important than regions. Inspired by this analysis, we pro-
pose the class-agnostic NMS for region selection in the box
head of the OD model, which does not sacrifice any VQA
performance but greatly improves the model’s inference
speed. This analysis also suggests that large-scale OD pre-
training should improve performance for grid-feature based
VL models, as supported by more results in Appendix F.

In Table 19, We also report VQA results with COCO
groundtruth object regions (GT-Obj, 80 classes) and object-
stuff regions (GT-Obj&Stuff, 171 classes). For VQA task,
COCO GT boxes are much worse than proposals from VG
trained models. This shows the difference between typical
OD tasks and OD in VL: OD in VL requires much richer
visual semantics to align with the rich semantics in the lan-
guage modality. This further echoes with our claim that an
image understanding module trained with rich semantics is
crucial for VL tasks.

model
region

GT-Obj GT-Obj&Stuff
Anderson
et al. [2] VinVL (ours)

Anderson
et al. [2] 63.81 ±0.94 66.68 ±0.16 68.52 ±0.11 69.05 ±0.06

VinVL (ours) 65.60 ±0.21 68.13 ±0.26 70.25 ±0.05 71.34 ±0.17

Table 19: Ablation of region and model on VQA.

E. More on FPN and Comparison of C4 and
FPN

E.1. Two reasons why FPN performs worse than C4
on VL tasks.

Our experimental results confirm the conclusion of [13]
that the FPN model does not provide better region features
for VL tasks than the C4 model (Columns “R50C4” vs.
“R50FPN” in Table 20). Our analysis reveals two reasons.
First of all, all layers involved in feature extraction in the
C4 model have been pre-trained using ImageNet while the
MLP head of FPN does not. It turns out that the VG dataset
is still small to train a good visual features for VL tasks
and using ImageNet-pre-trained weights is beneficial. This
can be verified by two experiments: (1) When the R50-C4
model is trained on VG with its box head randomly initial-
ized (VG-trained - R50C4 w/ box head randomly initial-
ized), the C4 model’s performance is the same as FPN; and
(2) C4 and FPN achieve the same performance after vision
pre-training on 4 datasets (68.3 vs. 68.2). The second rea-
son is due the network architecture (CNN vs. MLP) of the
box head in the OD model. The convolutional head in C4
has a better inductive bias in encoding visual information
than the MLP head in FPN. This can be verified by the fact
that when vision features from randomly initialized mod-
els are used (Row “Initial” in Table 20), R50-C4 performs
much better than R50-FPN, indicating that the initial C4

18



no image feature
w

R50-C4 w/ box head
randomly initialized R50-FPN R50-C4 4Sets→ R50-FPN 4Sets→R50-C4

VG-trained – 67.6 ±0.13 67.6±0.30 68.0±0.16 68.3±0.11 68.2±0.05

Initial 55.5±0.50 61.8 ±0.47 57.6±0.16 64.8±0.44 66.1±0.23 66.8±0.21

Table 20: C4 vs FPN architecture on VQA. Boxes used to extract features v and tags q used in VL model are the same with
those used in OSCAR [20]. Row “Initial” means using the initialization model without VG training for feature extraction.

features encode much more useful visual information than
the inital FPN features. The “random” C4 features nearly
match the feature from ImageNet pre-trained model (Row
“Initial” Column “R50C4”), while “random” FPN features
are close to the performance without visual features as input
(Row “Initial” Column “no image feature w”).

E.2. Effect of pooling methods in FPN on VQA per-
formance.

Different from C4 models that extract region features
from a single scale (the end of C4 block), FPN models ex-
tract region features from multiple scales adaptively based
on the area of the region. Therefore, there is some in-
homogeneity in FPN’s region features since they may come
from different scales. In Figure 7, we show that this is
not the cause of FPN’s worse performance than C4 on the
VQA task. More specifically, we experiment with 4 pooling
methods for FPN architecture. (1) adapt: the original FPN’s
pooling method that extract features adaptively from differ-
ent scales; (2) max: extract features from all scales and then
do a max-pool; (3) avg: extract features from all scales and
then do an average-pool; (4) concat: extract features from
all scales and then concatenate them together. We also train
multiple FPN models on VG with these pooling methods,
with or without pre-training on the Objects365 dataset. We
experiment on all possible combinations (in total 8 × 4) of
8 vision models and 4 pooling methods on the VQA task.
When there is a parameter dimension mis-match, e.g., non-
concat FPN models but use concat pooling methods in VQA
and vice versa, we specify those parameter randomly with
PyTorch’s default initialization method. The results in Fig-
ure 7 shows that (1) there is no obvious difference in differ-
ent pooling methods, with the default “adapt” and the “con-
cat” methods perform slightly better than “max” and “avg”;
(2) (without surprise) the performance is significantly worse
when there is a parameter dimension mismatch between vi-
sion models and VL task feature extraction methods, i.e.,
non-concat FPN models but use concat pooling methods in
VQA and vice versa. These results show that the pooling
method (no matter in vision model training or in VL task
feature extraction) is not the root cause of FPN’s worse per-
formance than C4 on the VQA task.

E.3. Large-scale object-detection pre-training of C4
and FPN models

In this paper, we have trained R50-C4, R50-FPN, R152-
C4 and R152-FPN models on the merged object detection
datasets described in Table 2. In Figure 8, we report the
mAP 50 of checkpoints from these 4 experiments on 4 val-
idation sets: COCO with stuff (top left), Objects365 (top
right), OpenImages (bottom left) and Visual Genome (1594
object classes, bottom right). For R50 models, the R50-FPN
model is slightly better than C4 on COCO and Objects365
but slightly worse than C4 on Visual Genome. For R152
models, the R152-FPN model is consistently worse than
the R152-C4 model on all 4 different datasets. Therefore,
we finally use the R152-C4 model for downstream vision-
language tasks.

F. Grid feature

In Table 21, we train grid-feature based and region-
feature based X152 models for VQA, with the vision mod-
els pre-trained on different vision datasets, i.e., “ImageNet-
5k” from [39], our 4-dataset merged OD dataset 2 (4Sets),
our VG dataset with 1594 object classes and 524 at-
tribute classes (VG with Attr), and first 4Sets and then
VG (4Sets→VG). Vision models in the last three cases
are trained with initialization from the same ImageNet-
5k checkpoint from [39]. All the region features are ex-
tracted with boxes proposed by our best X152-C4 model
(pre-trained on 4Sets and fine-tuned on VG). By compar-
ing “ImageNet-5k” and “4Sets→VG”, we see that our pro-
posed vision pre-training improves performance for both
the grid-feature based model and the region-feature based
model. Since the X152 backbone is much larger than the
R50 backbone in Figure 5, the larger model makes better
use of the large pre-training datasets and thus has more sig-
nificant improvements. It is interesting to see that for grid-
feature based models, the “ImageNet-5k” model performs
better than the “4Sets” model and the “VG with Attr”, while
it is not the case for region-feature based models. This may
indicate that how the vision model is trained (grid-feature
wise or region-feature wise) may have big impact on the
downstream VL tasks.

19



Figure 7: Pooling methods in FPN feature extraction are not the root cause of FPN’s worse performance than C4. X-axis:
the pooling method when extracting features for VL tasks; Y-axis: the pooling method (vision model) when pre-training
the visual feature extraction model. All experiments are using regions from the Bottum-up Top-down model [2]. Each
combination is experimented twice with two random seeds, i.e. seed=42 on the left and seed=88 on the right. The results
from two random seeds are consistent.

Figure 8: Checkpoints’ mAP 50 on 4 validation sets: COCO with stuff (top left), Objects365 (top right), OpenImages
(bottom left) and Visual Genome (1594 object classes, bottom right). For R50 models, the R50-FPN model is slightly better
than C4 on COCO and Objects365 but slightly worse than C4 on Visual Genome. For R152 models, the R152-FPN model is
consistently worse than the R152-C4 model on all 4 different datasets.

G. End-to-end inference efficiency

We report the end-to-end inference time of different
VQA models on a Titan-X GPU and a Xeon E5 CPU in

Table 22. For CPU evaluation, we force that the infer-
ence use only one CPU thread. The input image size is
800 × 1333, and we run the inference with batch size 1
(one image-question pair per batch). We can see that (1)

20



ImageNet-5k
[39] 4Sets VG with Attr 4Sets→VG

grid feature (273) 68.3±0.29 65.2±2.47 67.5±0.20 69.4*

region feature (50) 67.7±0.16 68.5±0.13 69.8±0.23 70.6±0.13

* The other run failed and thus there is no std for this experiment.

Table 21: Ablation study of X152 models on VQA. Vision models in the last three columns are trained with initialization
from the ImageNet-5k checkpoint in the first column. All the region features are extracted with boxes proposed by our best
X152-C4 model (pre-trained on 4Sets and fine-tuned on VG). By comparing the first column and the last column, we see
that our proposed vision pre-training (first on 4 sets and then on VG with attributes) improves performance for both the grid-
feature based model and the region-feature based model. Since the X152 backbone is much larger than the R50 backbone in
Figure 5, the larger model can make better use of the large pre-training datasets and thus have more significant improvements.

Model R50-C4 R101-C4 [2] X152-C4
Vision VL Vision VL Vision VL

Grid-50 0.059±0.018 0.029±0.002 0.083±0.025 0.030±0.003 0.355±0.022 0.031±0.003

Grid-273 0.056±0.005 0.027±0.002 0.082±0.022 0.034±0.001 0.344±0.036 0.037±0.004

Object 0.373±0.040 0.031±0.005 0.663±0.042 0.034±0.003 0.687±0.064 0.036±0.005

Object-eff 0.165±0.029 0.029±0.002 0.442±0.119 0.036±0.003 0.475±0.049 0.037±0.005

Grid-50 (cpu) 1.943±0.244 0.480±0.042 4.050±0.398 0.469±0.046 17.765±1.693 0.501±0.047

Grid-273 (cpu) 2.032±0.230 1.368±0.056 4.052±0.372 1.283±0.067 17.664±1.713 1.326±0.053

Object (cpu) 11.808±1.322 0.500±0.045 31.863±7.932 0.585±0.044 29.641±3.097 0.565±0.044

Object-eff (cpu) 11.729±1.280 0.510±0.044 31.791±8.027 0.587±0.043 29.687±3.011 0.574±0.036

Table 22: Time cost of end-to-end inference on VQA. All cross-modal models are BERT-Base. On the SOTA number
obtained with X152-C4 region features, the performance keeps the same when changing to the efficient way to extract the
feature while the efficiency greatly improves on GPU. The efficient version does not lead to time saving on CPU, because
nearly all inference time is taken by the backbone and C4 head and the time from NMS operations is nearly ignorable on
CPU.

vision models dominate the inference time, especially for
large models; (2) models based on grid-feature are faster
than those based on region feature; (3) with our proposed
fast inference trick, region-feature models are greatly sped
up and their inference time can be brought to within 3 times
of that of grid-feature models on GPU. We find that on CPU
with a single thread, our class-agnostic trick does not lead
to time saving, because nearly all inference time is taken by
the backbone and C4 head and the time from NMS opera-
tions is nearly ignorable on CPU.

21


