
We are More than Our Joints: Predicting how 3D Bodies Move
**Appendix**

MOJO is implemented using SMPL-X but any other parametric 3D body model could be used, e.g. [39, 54]. To do so,
one only needs to implement the recursive fitting of 3D pose to observed markers. This is a straightforward optimization
problem. In this paper, we use SMPL-X to demonstrate our MOJO idea, because we can exploit the large-scale AMASS
dataset to train/test our networks. Moreover, SMPL-X is rigged with a skeleton like other body models in computer graphics,
so it is completely compatible with standard skeletal techniques.

A. More Method Details
Marker placements in our work. In our experiments, we use two kinds of marker placements. The first (default) one is
the CMU [1] setting with 41 markers. The second one is the SSM2 [34] setting with 67 markers. These marker settings are
illustrated in Fig. S1.

CMU placement, 41 markers

SSM2 placement, 67 markers

Figure S1: Illustration of our marker settings. The markers are denoted by 3D spheres attached to the SMPL-X body surface.
From left to right: the front view, the back view and the top view.

Network architectures. We have demonstrated the CVAE architecture of MOJO in Sec. 3, and compare it with several
baselines and variants in Sec. 4. The architectures of the used motion generators are illustrated in Fig. S2. Compared to the
CVAE of MOJO, VAE+DCT has no residual connections at the output, and the velocity reconstruction loss is replaced by a
loss to minimize |xM � y0|2 [56]. MOJO-DCT-proj encodes the motion Y into a single feature vector, rather than a set of
frequency components.
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Figure S2: From top to bottom: (1) The CVAE architecture of MOJO. (2) The CVAE architecture of MOJO-DCT, which is
used in Tables 1 3 4. (3) The architecture of VAE+DCT, which is evaluated in Tab. 2. Note that we only illustrate the motion
generators here. The recursive projection scheme can be added during the testing time.

B. More Experimental Details
Implementation. We use PyTorch v1.6.0[Paszke et al. 2019] in our experiments. In the training loss Eq. (1), we empirically
set ↵ = 3 in all cases. We find a larger value causes over-smooth and loses motion details, whereas a smaller value can cause
jitters. For the models with the latent DCT space, the robust KLD term with the loss weight 1 is employed. For models
without the latent DCT space, we use a standard KLD term, and set its weight to 0.1. The weights of the KLD terms are
not annealed during training. In the fitting loss Eq. (2), we empirically set {�1,�2} = {0.0005, 0.01}. Smaller values can
degrade the pose realism with e.g. twisted torsos, and larger values reduce the pose variations in motion. Our code is publicly
released, which delivers more details.

The model ‘MOJO-DCT-proj’ has a latent dimension of 128. However, ‘MOJO-proj’ suffers from overfitting with the
same latent dimension, and hence we set its latent dimension to 16. We use these dimensions in all experiments.

AMASS sequence canonicalization. To unify the sequence length and world coordinates, we canonicalize AMASS as
follows: First, we trim the original sequences into 480-frame (4-second) subsequences, and downsample them from 120fps
to 15fps. The condition sequence X contains 15 frames (1s) and the future sequence Y contains 45 frames (3s). Second, we



unify the world coordinates as in [60]. For each subsequence, we reset the world coordinate to the SMPL-X [40] body mesh
in the first frame: The horizontal X-axis points in the direction from the left hip to the right hip, the Z-axis is the negative
direction of gravity, and the Y-axis is pointing forward. The origin is set to to the body’s global translation.

More discussions on MMADE and MMFDE. As in [56], we use MMADE and MMFED to evaluate prediction accuracy
when the input sequence slightly changes. They are regarded as multi-modal version of ADE and FDE, respectively. Let’s
only demonstrate MMADE with more details here, since the same principle applies to MMFDE.

The ADE can be calculated by

eADE(Y) =
1

T
min
Y 2Y

|Y � Ygt|2, (3)

in which Y is a predicted motion, Y is the set of all predicted motions, and Ygt is the ground truth future motion. In this
case, the MMADE can be calculate as

eMMADE(Y) = EY ⇤2YS


1

T
min
Y 2Y

|Y � Y ⇤|2
�

(4)

with
Ys = {Y ⇤ 2 Ygt | d(X⇤,Xgt) < ⌘}, (5)

with Ygt is the set of all ground truth future motion, X denotes the corresponding motion in the past, d(·) is a difference
measure, and ⌘ is a pre-defined threshold. In the work of DLow [56], the difference measure d(·) is based on the L2 difference
between the last frames of the two motion sequences from the past.

Body deformation metric. We measure the markers on the head, the upper torso and the lower torso, respectively. Specif-
ically, according to CMU [1], we measure (‘LFHD’, ‘RFHD’, ‘RBHD’, ‘LBHD’) for the head, (‘RSHO’, ‘LSHO’, ‘CLAV’,
‘C7’) for the upper torso, and (‘RFWT’, ‘LFWT’, ‘LBWT’, ‘RBWT’) for the lower torso. For each rigid body part P , the
deformation score is the variations of marker pair-wise distances, and is calculated by

sd(P ) = EY

2

4
X

(i,j)2P

�t(|vt
i � vt

j |2)

3

5 , (6)

in which vt
i denotes the location of the marker i at time t, �t denotes the standard deviation along the time dimension, and

EY [·] denotes averaging the scores of different predicted sequences.

User study interface. Our user study is performed via AMT. The interface is illustrated in Fig. S3. We set a six-point
Likert scale for evaluation. Each video is evaluated by three subjects.

Performance of the original VAE setting in DLow. Noticeably, the DLow CVAE with the original setting cannot directly
work on body markers, although it works well with joint locations. Following the evaluation in Tab. 1, the original VAE
setting in DLow gives (diversity=81.10, ADE=2.79, FDE=4.71, MMADE=2.81, MMFDE=4.71, FSE=0.0031). The diversity
is much higher, but the accuracy is considerably worse. Fig. S4 shows that its predicted markers are not valid.

Influence of the given frames. Based on the CMU markers, we train another two MOJO versions with different in-
put/output sequence lengths. The results are in Tab. S1. As the predicted sequence becomes shorter and the input sequence
becomes longer, we can see that the accuracy increases but the diversity decreases consistently, indicating that MOJO be-
comes more confident and deterministic. Such behavior is similar to other state-of-the-art methods like DLow. Furthermore,
to predict even longer motion sequences, one could use a sliding window, and recursively input the predicted sequence to the
pre-trained MOJO model to generate new sequences.



Figure S3: The user interface of our perceptual study on AMT.

Figure S4: Illustrations of the invalid body markers predicted by the original DLow VAE setting. From left to right are five
predicted frames over time.

MOJO frame setting Div." ADE# FDE# MMADE# MMFDE# BDF#

ACCAD
pred. 55 with 5 32.666 1.303 1.793 1.409 2.210 0
pred. 45 with 15 20.676 1.214 1.919 1.306 2.080 0
pred. 15 with 45 3.728 0.642 1.048 0.701 1.093 0

BMLhandball
pred. 55 with 5 27.045 1.032 1.170 1.054 1.192 0
pred. 45 with 15 16.806 0.949 1.139 1.001 1.172 0
pred. 15 with 45 3.574 0.666 0.993 0.759 1.051 0

Table S1: Varying the length of the input and output sequence, denoted as ‘predicting Y frames with X frames’. The setting
‘pred. 45 with 15’ (predicting 3 sec with 1 sec) was reported in Tab. 6. Best results are in boldface.

C. More Analysis on the Latent DCT Space
Analysis on the latent space dimension. First, we use Human3.6M to analyze the latent DCT space, with joint locations
to represent the human body in motion. Tab. S2 shows the performance under various settings. Similar to Tab. 2, as



Method Diversity ADE FDE MMADE MMFDE

(32d)VAE+DCT 3.405 0.432 0.544 0.533 0.589
(32d)VAE+DCT+1 7.085 0.419 0.514 0.515 0.547
(32d)VAE+DCT+5 12.007 0.415 0.510 0.505 0.542
(32d)VAE+DCT+10 13.103 0.417 0.513 0.507 0.544
(32d)VAE+DCT+20 14.642 0.418 0.516 0.510 0.548

(64d)VAE+DCT 3.463 0.429 0.544 0.532 0.587
(64d)VAE+DCT+1 7.254 0.417 0.514 0.513 0.547
(64d)VAE+DCT+5 12.554 0.413 0.510 0.504 0.540
(64d)VAE+DCT+10 14.233 0.414 0.514 0.506 0.546
(64d)VAE+DCT+20 15.462 0.416 0.517 0.508 0.548

Table S2: Model performances with different latent dimensions and number of frequency bands with DLow on the Hu-
man3.6M dataset. Best results are in boldface. This table is directly comparable with Tab. 2, which shows the results with
the 128d latent space (same with [56]).

Method Diversity ADE FDE MMADE MMFDE FSE(10�3)

(8d)MOJO-DCT-proj 0.027 2.119 3.145 2.143 3.153 -2.6
(16d)MOJO-DCT-proj 0.060 2.105 3.134 2.125 3.133 -3.5
(32d)MOJO-DCT-proj 0.152 2.045 3.071 2.065 3.068 -3.9
(64d)MOJO-DCT-proj 17.405 1.767 2.213 1.790 2.219 0.2

(128d)MOJO-DCT-proj 21.504 1.608 1.914 1.628 1.919 0.0

(8d)MOJO-proj 20.236 1.525 1.893 1.552 1.893 -0.8
(16d)MOJO-proj 23.660 1.528 1.848 1.550 1.847 0.4
(32d)MOJO-proj 24.448 1.554 1.850 1.573 1.846 1.0
(64d)MOJO-proj 24.129 1.557 1.820 1.576 1.819 1.0

(128d)MOJO-proj 25.265 1.620 1.852 1.636 1.851 2.5

Table S3: Performances with various latent space dimensions on BMLhandball. Best results of each model are in boldface.

DLow is applied on more frequency bands, the diversity consistently grows, and the motion prediction accuracies are stable.
Noticeably, VAE+DCT with a 32d latent space outperforms the baseline [56] (see Tab. 2), indicating that our latent DCT
space has better representation power.

Additionally, for the marker-based representation, we evaluate the influence of the latent feature dimension using the
BMLhandball dataset. The results are presented in Tab. S3, in which DLow is applied for MOJO-DCT-proj. According to
the investigations on the Human3.6M dataset, we apply DLow on the lowest 20% (the lowest 9) frequency bands in MOJO-
proj, corresponding to VAE+DCT+20 in Tab. S2. We can see that the MOJO-DCT-proj performs best with a 128d latent
space, yet is worse than most cases of MOJO-proj, which indicates the representation power of the latent DCT space. In the
meanwhile, different versions of MOJO-proj perform comparably with different latent dimensions. As the feature dimension
increases, the diversity consistently increases, whereas the prediction accuracies decrease in most cases. Therefore, in our
experiments, we set the latent dimensions of MOJO-DCT-proj and MOJO-proj to 128 and 16, respectively.

Visualization of the latent DCT space. Since the latent space is in the frequency domain, we visualize the average fre-
quency spectra of the inference posterior in Fig. S5, based on the VAE+DCT(128d) model and the Human3.6M dataset. We
find that the bias of fc layers between the DCT and the inverse DCT can lead to stair-like structures. For both cases with and
without the fc layer bias, we can observe that most information is concentrated at low-frequency bands. This fact can explain
the performance saturation when employing DLow on more frequency bands, and also fits the energy compaction property of
DCT. Moreover, we show the performance without the fc bias in Tab. S4. Compared to the results in Tab. 2, we find that the
influence of these bias values is trivial. Therefore, in our experiments we preserve the bias values in these fc layers trainable.



Method Diversity ADE FDE MMADE MMFDE

VAE+DCT-fcbias 3.442 0.431 0.547 0.525 0.584
VAE+DCT+1-fcbias 7.072 0.417 0.514 0.506 0.541
VAE+DCT+5-fcbias 13.051 0.413 0.512 0.498 0.537
VAE+DCT+10-fcbias 14.723 0.415 0.515 0.500 0.540
VAE+DCT+20-fcbias 16.008 0.415 0.517 0.501 0.542

Table S4: The model performances with zero values of the fc layer bias. ‘-fcbias’ denotes no bias. The best results are in
boldface, and can be directly compared with the results in Tab. 2.

Figure S5: With the VAE+DCT(128d) model, we randomly select 5000 samples from the Human3.6M training set, and
obtain their mean and the logarithmic variance values from the VAE encoder. To show the frequency spectra, we average all
absolute values of mean or logarithmic variance. Note that when both mean and logarithmic variance are zero, the posterior
is equal to the standard normal distribution, which only produces white noise without information.


