
Supplementary Material for iVPF:
Numerical Invertible Volume Preserving Flow for Efficient Lossless Compression

Shifeng Zhang Chen Zhang Ning Kang Zhenguo Li
Huawei Noah’s Ark Lab

{zhangshifeng4, chenzhang10, kang.ning2, li.zhenguo}@huawei.com

A. Detailed Implementation of iVPF

A.1. Normalising Flow and Volume Preserving
Flows

Unless specified, in this subsection, we discuss the con-
tinuous flow, which is generally used for training. Note that
iVPF is constructed based on the trained model with minor
modifications.

A.1.1 Normalising Flows

As discussed in Sec. 3.1, the general normalising flow es-
tablishes a continuous bijection f : X → Z between in-
put data X and latent space Z . The flow model is con-
structed with composition of flow layers such that f =
fL◦...◦f2◦f1. Let yl = fl(yl−1), y0 = x and z = yL. The
prior distribution pZ(z) can be stipulated from any paramet-
ric distribution families, e.g., Gaussians, logistic distribu-
tion, etc. Then the model distribution pX(x) of input data
x can be expressed with the latent variable z such that

log pX(x) = log pZ(z) +

L∑
i=1

log | ∂yl

∂yl−1
|, (1)

where | ∂yl

∂yl−1
| is the absolute value of the determinant of the

Jacobian matrix.
The inverse flow is f−1 = f−11 ◦ ... ◦ f−1L . Given latents

yL = z, the original data x can be recovered with yl−1 =
f−1l (yl) and x = y0.

A.1.2 Constructing Volume Preserving Flows

Volume preserving flows have the property | ∂z∂x | = 1. Each
volume preserving flow is a composition of volume preserv-
ing layers where | ∂yl

∂yl−1
| = 1 for any yl = fl(yl−1), l =

1, 2, ..., L. pX(x) can be directly computed with prior dis-
tribution such that pX(x) = pZ(z), z = f(x). The prior
distribution adopted in this work is more complex than that
used in general flows, and the distribution parameters are

trainable variables. In this paper, the prior distribution is
the mix-Gaussian distribution

pZ(z) =

d∏
i=1

[K∑
k=1

πik · N (zi|µik, σ
2
ik)
]
, (2)

where z = [z1, ..., zd]> and
∑K

k=1 πi = 1. πik, µik, σ
2
ik

are computed with learnable parameters α,µ,γ ∈ Rd×K .
In particular, πik = softmax(αi), µik = µik, σ

2
ik =

exp(γik).
For factor-out layers (shown in Sec. 3.1), p(z1|y1) is

modelled with gaussian distribution

p(z1|y1) = N (z1|µ(y1), exp(γ(y1))), (3)

where µ(·),γ(·) are all modelled with neural networks. The
input dimension is the same as that of y1 and the output
dimension is the same as that of z1.

From Sec. 3.1, it can be seen that the volume preserv-
ing layers can be constructed from most general flow layers
with limited constraints, thus the expressive power is close
to the general flow. Moreover, the complex prior with learn-
able parameters improves the expressive power of iVPF. In
fact, compared to general flows, iVPF reaches higher bpd
than most non-volume preserving ones like RealNVP [1]
and Glow [4].

A.1.3 Training Volume Preserving Flows

As pX(x) can be directly computed, the training objective
is the maximum log-likelihood. Note that we use the dis-
crete data for training the continuous flow. In particular, the
input data (images, texts, binary data, etc.) are a branch of
integers such that x ∈ {0, 1, ..., 2h − 1}d. To resolve this
issue, we use variational dequantization technique to make
the input data continuous [3] in which some noise is added
to input data. Given the discrete data x, the training objec-
tive is

L = − log pX(x + u◦) + log q(u◦|x) u◦ ∼ q(u|x) (4)

1

where u◦ ∈ [0, 1)d. q(u|x) is certain distribution within
[0, 1)d, which can be either learned distribution with param-
eters (e.g. flows), or pre-defined distributions.

In this paper, we simply use uniform distribution such
that q(u|x) = U(0, 1)1, in which the noise is dependent
with the input such that q(u|x) = q(u). This implemen-
tation is simple for flow training. In fact, we may use
more complex q(u|x) for better model. Moreover, for sta-
ble training, we normalise the dequantized data x + u◦ to
[−0.5, 0.5] by linear transformation before feeding the flow.

It is clear that the expected value of Eq. (4) is
Eq(u|x)[− log pX(x + u) + log q(u|x)]. It has close rela-
tionship between Eq. (10) in the paper.

A.2. rANS Coder

rANS is an efficient entropy coding method. It is
the range-based variant of Asymmetric Numeral System
(ANS) [2]. Given symbol s and the probability mass func-
tion p(s), s can be encoded with codelength − log2 p(s).

rANS is very simple to implement as the encoded bits is
represented by a single number. For existing code c, s can
be encoded to c′ as

c′(c, s) = bc/lsc ·m+ (c mod ls) + bs (5)

In the above equation, m is a large integer and usually be
chosen as a power of two. Denote by cdf(s) as the cumu-
lative density function such that cdf(s) =

∑s
i=1 p(s), we

have bs = bcdf(s− 1) ·mc and ls = bs+1 − bs.
Given p(s) and code c′, the symbol can be recovered.

First, we compute b = c′ mod m, then s can be recovered
such that bs ≤ b < bs+1. This can be implemented with
binary search. Then the code can be recovered with

c(c′, s) = bc′/mc · ls + (c′ mod m)− bs (6)

We can easily perform bits-back coding with rANS
coder. The auxiliary bits can be initialised with certain inte-
ger. Then the bits-back decoding can be performed with Eq.
(6) and the code is recovered with Eq. (5). In this paper, we
use rANS for coding with iVPF.

A.3. From Volume Preserving Flow to iVPF

With simple modifications, a volume preserving flow can
be transformed to an iVPF. The model parameter of the
iVPF is directly the parameter in the trained continuous vol-
ume preserving flow. Furthermore, the following modifica-
tions are performed:

(1) Outputs of each layer. Please refer to Sec. 3.2.1 and
3.3. The inputs and outputs of each flow layer should be k-
precision quantized. While in continuous flow, quantization
is not needed.

1Note that the uniform distribution is slightly different than used in the
main paper (see Sec. 4.1), as the input data is not normalised here. In fact,
they are equivalent after normalisation.

Figure 1. Illustration of how non-volume preserving flow could
lead to no-bijection after discretization. The orange regions denote
the domain U0 (in x) and the corresponding co-domain V0 (in z).

(2) Coupling layer. Please refer to Sec. 3.3.1. The re-
sults should be computed with Alg. 1. While in continuous
flow, the outputs can be directly computed with Eq. (2).

(3) 1 × 1 convolution layer. Please refer to Sec. 3.3.2.
While in continuous flow, the outputs can be directly com-
puted with matrix multiplication of W.

B. Proofs of Propositions

In this section, we show the proof of the two propositions
in Section 3.2.2. We represent the two propositions in this
section and use Fig. 1 to illustrate Proposition 2.

Proposition 1. Let f be a smooth bijection from X to
Z . Assume for x0, it holds that | ∂z∂x (x0)| > 1. Then
there exists an integer K, for any k-precision discretisa-
tion scheme where k > K, we have − log pZ(bf(x0)e)δ >
− log pX(x0)δ.

Proof. By change of variable, we have

pZ(f(x0))| ∂z

∂x
(x0)| = pX(x0).

Since | ∂z∂x (x0)| > 1, we have pZ(f(x0)) < pX(x0). Let
ε = pX(x0) − pZ(f(x0)). Due to the continuity of pZ ,
there exist δ > 0, s.t. pZ(z′) ∈ (pZ(z) − ε, pZ(z) + ε),
when ||z − z′|| < δ. K can be chosen st. 2−K−1 < δ and
we have

||f(x0)− bf(x0)e|| ≤ 2−K−1 < δ,

which means pZ(bf(x0)e) < pX(x0).

Proposition 2. Let f be a smooth bijection from X to Z .
Assume for x0, it holds that | ∂z∂x (x0)| < 1. Then there ex-
ists an integer K, for any k > K, f cannot induce a bi-
jection between the discretised domain X̄ and discretised
co-domain Z̄ .

2

Proof. Assume | ∂z∂x (x0)| < 1, due to the continuity of the
flow gradient f ′, there must be a neighbourhood of x0 de-
noted by U0, such that | ∂z∂x | < 1 for any x ∈ U0. Let
V0 = {z = f(x) : x ∈ U0}, we have |V0| < |U0| where | · |
denotes the volume of a space.

Consider a discretisation scheme dividing the space into
bins with volume δ much smaller than |U0|. Since the vol-
ume of V0 is strictly smaller than the volume of U0, the
number of bins in V0 is strictly smaller than that in U0.
Thus a bijection could not be induced in such scenario for
non-volume preserving flows. To be specific, there exists
multiple xs at different bins that are mapped to the same z,
making the lossless compression intractable.

C. Correctness of MAT (Alg. 1)
Unless specified, we use the notation in Sec. 3.3.1.
For the encoding process, the input is (xb, r0) where

bxbe = xb, r0 ∈ [0, 2C), the parameters are integers
m0,m1, ...,mdb

where m0 = mdb
= 2C , and the expected

output is (zb, rdb
). Then (zb, rdb

) is computed as follows:

1. x̄b = 2k · xb.

2. Given x̄b = [x1, ..., xdb
]> and r0, compute yb =

[y1, ..., ydb
]> and v1, ..., vdb

for i = 1, ..., db such that

vi = xi ·mi−1 + ri−1;

yi = bvi/mic, ri = vi mod mi.

Then get (yb, rdb
).

3. zb = yb/2
k + bte. Then get (zb, rdb

).

For decoding process, the input is (zb, rdb
) where bzbe =

zb, rdb
∈ [0, 2C), the parameters m0,m1, ...,mdb

are the
same as that in encoding process withm0 = mdb

= 2C , and
the expected output is (xb, r0). Then (xb, r0) is computed
as follows:

1. yb = 2k · (zb − bte).

2. Compute x̄b = [x1, ..., xdb
]> and v1..., vdb

for i =
db, ..., 1 such that

vi = yi ·mi + ri;

xi = bvi/mi−1c, ri−1 = vi mod mi−1.

Then get (x̄b, r0).

3. xb = x̄b/2
k. Then get (xb, r0).

Then the correctness of MAT in Alg. 1 is ensured by the
following theorem:

Theorem 3. Given the above encoding and decoding pro-
cess, if r0 ∈ [0, 2C), then

P1: bzbe = zb, rdb
∈ [0, 2C);

P2: (xb, r0) and (zb, rdb
) establish a bijection.

Proof. P1. Just consider the encoding process. In Step 1,
xb is k-precision floating points, x̄b are integers. In Step
2, yb are integers as all elements are computed with in-
teger space. As rdb

= vdb
mod mdb

and mdb
= 2C ,

rdb
∈ [0, 2C). In Step 3, both yb/2

k and bte are k-precision
floating points, thus zb is k-precision ones with bzbe = zb.
Then the proof of P1 is completed.

P2. Consider Step 3 in the encoding process and Step 1
in the decoding process, as bzbe = zb, zb and yb establish a
bijection. Consider Step 1 in the encoding process and Step
3 in the decoding process, as bxbe = xb, xb and x̄b establish
a bijection. Then P2 induces the bijection between (x̄b, r0)
and (yb, rdb

).
Then we prove (x̄b, r0) and (yb, rdb

) establish a bijec-
tion. For ease of analysis, we rewrite the Step 2 in the
decoding process such that vdi = yi · mi + ri;x

d
i =

bvdi /mi−1c, rdi−1 = vdi mod mi−1. We should prove
xdi = xi for all i = 1, ..., db and rd0 = r0, which is done
with mathematical induction.

(i) For l = db, we prove that (xdl , r
d
l−1) = (xl, rl−1). In

fact, For the encoding process, xl · ml−1 + rl−1 = vel =
yl · ml + rl and rl ∈ [0,ml)(ml = mdb

= 2C). For
the decoding process, we have vdl = yl · ml + rl = vl =
xl ·ml−1 + rl−1. As rl−1 ∈ [0,ml−1), it is clear that xdl =
b(xl ·ml−1 +rl−1)/ml−1c = xl, r

d
l−1 = (xl ·ml−1 +rl−1)

mod ml−1 = rl−1.
(ii) For 1 ≤ l < db, if (xdl+1, r

d
l) = (xl+1, rl), we prove

that (xdl , r
d
l−1) = (xl, rl−1). For the encoding process, xl ·

ml−1 + rl−1 = vl = yl ·ml + rl. For the decoding process,
vdl = yl ·ml + rdl . As rdl = rl, we have vdl = vl. As rl−1 ∈
[0,ml−1), it is clear that xdl = b(xl ·ml−1+rl−1)/ml−1c =
xl, r

d
l−1 = (xl ·ml−1 + rl−1) mod ml−1 = rl−1.

Note that we use a fact that rl ∈ [0,ml), l = 1, ..., db
in (i)(ii), which can be directly derived from rl = vl
mod ml.

From (i)(ii), we have xdl = xl for all l = 1, ..., db and
rd0 = r0. It conveys that (xb, r0) and (zb, rdb

) are bijec-
tions, which completes the proof of P2.

D. Detailed Numerical Error Analysis of iVPF

In this section, we perform detailed numerical error anal-
ysis for iVPF. As the iVPF model mainly contains coupling
layer and 1×1 convolution layer, we focus on error analysis
on these layers. Overall error analysis is performed based
on the composition of flow layers.

In the rest of this section, the notation is the same as that
in the main paper. We first emphasise that the error between
x and the quantized x at precision k, denoted by bxe, is

|x− bxe| ≤ 2−k−1.

3

Table 1. Coding efficiency of LBB and iVPF on CIFAR10. k = 14 is used in iVPF.

batch size inference time (ms) time w/ coding (ms) # coding

LBB [3] 64 16.2 116 188
256 13.8 97 188

iVPF (Ours) 64 10.9 11.4 2
256 6.1 6.6 2

D.1. MAT and Coupling Layer

For all i = 1, 2, ..., db − 1, mi = round(m0/
∏i

j=1 sj);

and mdb
= m0 = round(m0/

∏i
j=1 sj) as

∏db

j=1 sj = 1.
Then we have mi − 0.5 ≤ m0/

∏i
j=1 sj ≤ mi + 0.5, and

mi−1 − 0.5 ≤ m0/
∏i−1

j=1 sj ≤ mi−1 + 0.5. Thus si is
approximated with mi−1/mi such that

mi−1 − 0.5

mi + 0.5
≤ si ≤

mi−1 + 0.5

mi − 0.5

Considering si is fixed and m0 = mdb
= 2C , it is clear that

mi = O(2C). As mi−1

mi
− mi−1−0.5

mi+0.5 = 1
mi
· 0.5(mi−1+mi)

mi+0.5 =

O(2−C), therefore we have s ≥ mi−1

mi
− O(2C). Similar

conclusion can be arrived such that s ≤ mi−1

mi
+O(2C) and

|si −
mi−1

mi
| ≤ O(2−C).

Then we investigate the error between yi = b(2k · xi ·
mi−1 + r)/mic/2k (0 ≤ r < mi−1) and si · xi. Note that
2k in the above equality correspond to Line 2 and 12 in Alg.
1. In fact, yi ≤ (2k · xi ·mi−1 + r)/(2k ·mi) < (2k · xi ·
mi−1+mi−1)/(2k·mi) = xi·mi−1/mi+mi−1/(2

k·mi) =
xi ·mi−1/mi+O(2−k), and yi > [(2k ·xi ·mi−1+r)/mi−
1]/2k > xi ·mi−1/mi − 1/2k = xi ·mi−1/mi −O(2−k).
With |si − mi−1

mi
| ≤ O(2−C), the error is estimated such

that

|yi − si · xi| ≤ |yi −
mi−1

mi
xi|+O(2−C)

≤ O(2−k) +O(2−C) = O(2−k, 2−C)

As zi = yi + btie and |btie − ti| = O(2−k), we finally
have

|zi − (sixi + ti)| ≤ |yi − si · xi|+ |btie − ti|
= O(2−k, 2−C) +O(2−k) = O(2−k, 2−C)

which is consistent with Eq. (7) in the main paper. Thus the
coupling layer in iVPF brings O(2−k, 2−C) error.

D.2. 1× 1 Convolution Layer

For any x, denote by z̃i the ith element of Ux and by zi
that derived in Eq. (8), it is clear that |zi− z̃i| = O(2−k) as
only quantization operation is involved.

For any x, denote by z̃i the ith element of Λx and by zi
that derived with Alg. 1, according to Sec. D.1, we have
|zi − z̃i| = O(2−k, 2−C).

For any x, denote by z̃i the ith element of Lx and by zi
that derived in Eq. (8), it is clear that |zi− z̃i| = O(2−k) as
only quantization operation is involved.

No numerical error is involved by performing permuta-
tion operation with the permutation matrix P.

As the convolution layer involves sequential matrix mul-
tiplications of U,Λ,L and P, the error is accumulated. De-
note by z = PLΛU and z̄ the output of the corresponding
iVPF layer. We have

|z̄− z| = O(2−k, 2−C).

D.3. Overall Error Analysis

Denote by z the output of the continuous volume pre-
serving flow model and by z̄ the output of iVPF model, then
we will show that

|z̄− z| = O(L2−k, L2−C).

Consider the continuous flow layer fl and the corre-
sponding iVPF layer f̄l. With the same input yl−1, we have
|f̄l(yl−1) − fl(yl−1)| = O(2−k, 2−C). It usually holds
that f is λl-Lipschitz continuous, and therefore |fl(ȳl−1)−
fl(yl−1)| ≤ λl|ȳl − yl|. Thus for the volume preserving
flow model with y0 = x, z = yL,yl = fl(yl−1), and the
corresponding iVPF model with ȳ0 = x, z̄ = ȳL, ȳl =
f̄l(ȳl−1), we have

|ȳl − yl| = |f̄l(ȳl−1)− fl(yl−1)|
≤ |f̄l(ȳl−1)− fl(ȳl−1)|+ |fl(ȳl−1)− fl(yl−1)|
≤ O(2−k, 2−C) + λl|ȳl−1 − yl−1|

and therefore

|z̄− z| =
L∑

l=1

(

L∏
k=l+1

λk)O(2−k, 2−C)

= O(L2−k, L2−C)

the last equality hold as
∏L

k=l+1 λk is bounded, which is
guaranteed by the volume-preserving property.

From the above formula, if L is limited and 2−k and 2−C

are relatively small, the latents generated with the iVPF
model is able to approximate the true distribution.

4

E. More Experiments on Coding Efficiency
The experiment is conducted on PyTorch framework

with Tesla P100 GPU and Intel(R) Xeon(R) CPU E5-2690
v4 @ 2.6GHz GPU. We adapt the ANS decoding and en-
coding code from LBB [3], which is very time-efficient.
The coding time is shown in Table 1. It is clear that the
proposed iVPF method is much faster than LBB. Moreover,
as LBB involves a large number of coding schemes, ANS
coding takes most of the time, while model inference time
takes the main time in iVPF.

References
[1] Laurent Dinh, Jascha Sohl-Dickstein, and Samy Ben-

gio. Density estimation using real nvp. arXiv preprint
arXiv:1605.08803, 2016. 1

[2] Jarek Duda. Asymmetric numeral systems: entropy coding
combining speed of huffman coding with compression rate of
arithmetic coding. arXiv preprint arXiv:1311.2540, 2013. 2

[3] Jonathan Ho, Evan Lohn, and Pieter Abbeel. Compression
with flows via local bits-back coding. In Advances in Neural
Information Processing Systems, pages 3879–3888, 2019. 1,
4, 5

[4] Durk P Kingma and Prafulla Dhariwal. Glow: Generative
flow with invertible 1x1 convolutions. In Advances in neural
information processing systems, pages 10215–10224, 2018. 1

5

