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Outline
In the supplementary document, we provide additional ex-

perimental results to further support our findings, as well as
details of our experiments and more visualizations. Below
is the outline.
• Section 1: Handling infinite values in CPP encoding.

In the main paper, we apply the inverse tangent operation
to deal with infinite values in the CPP encoded maps. We
study an alternative based on a simple clipping operation.

• Section 2: Hyperparameter analysis in CPP encoding.
Our CPP encoding method has a hyperparameterC which
is the distance between the upper and lower planes (i.e., a
ceiling and ground plane). We study how C affects depth
prediction performance.

• Section 3: Quantitative results of blind predictions.
We show the quantitative results of blind prediction to
better understand how CPP helps capture prior knowledge
for depth prediction.

• Section 4: Further study of PDA augmentation scales.
We provide a thorough study between the depth predictor
performance and PDA augmentation scales.

• Section 5: Further study of camera height and rota-
tion in CPP encoding. We compare the performance of
CPP on InteriorNet (with nearly fixed roll) by either en-
coding the true pitch or camera height while fixing the
other one.

• Section 6: CPP Encoding with Predicted Poses. Con-
sidering the scenario where test time camera poses are not
always available, we show experimental results of CPP
encoding with predicted poses during evaluations.

• Section 7: Additional details in experiments. We
present more experimental details such as RGB and depth
preprocessing steps, training the camera pose prediction
models, our evaluation protocol, and the ScanNet camera
pose distribution.

• More Visual Results. We include more depth prediction
visualizations of different methods in Fig. 7 and 8.

Table 1: Comparisons of different encoding methods evaluated
on InteriorNet test-sets. CPP applies an inverse tangent transform
tan−1 in encoding the camera poses. In contrast, CPP-Clip re-
places the tan−1 function with a clipping operation while keeping
every other step the same as CPP encoding. Both CPP and CPP-
Clip perform better than Vanilla model, demonstrating the effec-
tiveness of our CPP method. Clearly, using the inverse tangent
operator is better than clipping.

Models
Natural-Test-Set Uniform-Test-Set

↓ better ↑ better ↓ better ↑ better
Absr/Sqr/RMS-log δ1 / δ2 Absr/Sqr/RMS-log δ1 / δ2

InteriorNet
Vanilla .154 / .148 / .229 .803 / .945 .183 / .146 / .250 .724 / .926
+ CPP-Clip .109 / .124 / .204 .871 / .956 .111 / .096 / .189 .867 / .959
+ CPP .108 / .120 / .199 .872 / .958 .106 / .088 / .183 .876 / .961

ScanNet
Vanilla .125 / .068 / .186 .837 / .962 .177 / .121 / .265 .711 / .928
+ CPP-Clip .110 / .064 / .179 .869 / .964 .157 / .108 / .248 .758 / .936
+ CPP .108 / .060 / .171 .871 / .965 .154 / .106 / .239 .781 / .943

1. Handling Infinite Values in CPP Encoding
At the last step in computing CPP encoded maps MCPP ,

we apply the inverse tangent operator to eliminate the infin-
ity values (happens when the ray shooting from camera is
parallel to the ground plane) and maps the values of M (i.e.
MCPP = tan−1(M)) to the range [tan−1(min{h,C −
h}), π2 ]. However, the inverse tangent operator is not the
only choice. We provide an ablation study that replaces the
tan−1(·) with a clipping operation.

Specifically, we set a threshold τ that represents the prior
knowledge of the distance from camera to the furthest point
in the scene. Mathematically, for each point [u, v] in the
new CPP clipping encoded map MClip

CPP ∈ RH×W, we com-
pute the pseudo depth value:

MClip
CPP [u, v] =

{
M [u, v] M [u, v] < τ

τ otherwise

We set τ = 20.0 in this experiment. After clipping, we
linearly rescale the encoded map to the range of [-1.0, 1.0]
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Figure 1: Visual comparisons of encoded maps of CPP and CPP-
Clip with different pitch θ and camera height h. We set the thresh-
old τ=20 for CPP-Clip. Encoded maps computed by CPP-Clip
have the “red stripe” when the pitch is around 90◦ while CPP
encoded maps have more smooth transitions when capturing the
horizon.

Figure 2: Uppeer: visualizations of CPP encoding with different
hyper-parameter C (top); bottom: depth prediction performance
as a function of hyper-parameter C. We train depth predictors on
InteriorNet Natural train-set and test on its Natural test-set. From
visual inspection, changing the parameter C only affects the part
of CPP encoded maps where pixels are above the horizon. As
shown by the performance curve, our proposed CPP encoding is
very robust w.r.t different values of C.

to match the statistics of RGB images. We find this yields
better performance than directly using MClip

CPP . We visu-
ally compare some encoded maps in Fig. 1, where we see
the clipping method introduces artificial stripes. Probably
due to this, CPP-Clip does not perform as well as CPP that
adopts inverse tangent transform, as shown in Table 1.

2. Hyperparameter Analysis in CPP Encoding

CPP encoding assumes that the camera moves in an
empty indoor scene with an infinite floor and ceiling and the
distance between two planes in the up direction is described
by the parameter C. This distance is set to C = 3 meter
in all experiments in the main paper. To verify the per-
formance change w.r.t the distance C, we conduct experi-
ments on InteriorNet Natural train-set with various distance

Figure 3: Illustration of how camera pose provides a strong depth
prior through “blind depth prediction”. Specifically, over the Inte-
riorNet Natural train-set, we train a depth predictor solely on the
CPP encoded maps M without RGB as input. For visual compar-
ison, we compute an averaged depth map (shown left). We visual-
ize depth predictions on two random examples. All the depth maps
are visualized with the same colormap range. Perhaps not surpris-
ingly, M presents nearly the true depth in floor areas, suggesting
that camera pose alone does provide strong prior depth informa-
tion for these scenes.

Table 2: Comparison between using the average depth map (Avg)
computed on the InteriorNet Natural train-set and the “blind pre-
dictor”, which estimates depth solely from per-image CPP en-
coded maps without RGB images. We report results on Interior-
Net Natural test-set. We find that “blind predictor” performs better
than “avg depth map”, implying the benefit of exploiting camera
poses. We also report on two specific images on which “blind
predictor” performs well compared to the average performance of
Avg or Blind, as shown in Fig. 3. This further confirms that camera
poses contain useful prior knowledge about scene depth.

Models
↓ better ↑ better

Abs-Rel/Sq-Rel/RMS-log δ1 / δ2

Avg .414 / .641 / .466 .346 / .638
Blind .342 / .519 / .395 .485 / .750
Img-1 .041 / .010 / .082 .946 / .999
Img-2 .115 / .059 / .176 .793 / .990

C = [4, 5, 6, 7, 8]. As shown in Fig. 2, the performance of
depth predictors are very robust in terms of the parameterC.
In other words, CPP encoding improves the depth predictor
performance and reduces the distribution bias consistently,
regardless of the parameter C.

3. Quantitative Results of Blind Predictions

In the main paper, we visually demonstrate that camera
poses indeed contain prior knowledge of scene depth. The
quantitative results of those visual examples are shown in
Table 2, from which we find two key insights. First, the
blind predictor achieves better performance than evaluat-
ing with average training depth maps, suggesting that cam-
era poses alone contain the prior information about scene
depth. In other words, training depth predictors with the
camera pose alone are better than “random guess” from
average training depth maps. Second, the blind predictor
achieves promising performance on two images shown in
Fig. 3 quantitatively. Together with the visualization of the
prediction, we find that blind predictors make significantly
more accurate depth prediction on floor regions, which con-
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Figure 4: Upper row: visualizations of augmented examples using PDA with different scales. Bottom row: performance curves of depth
predictor trained with PDA with different scales of pitch θ (left) and roll ω (right), respectively. Please refer to the main paper (Figure 9)
for detailed descriptions. All models are trained on InteriorNet Natural train-set and evaluated on both Natural (dotted line) and Uniform
(solid line) test-sets. As we increase the augmentation scale in pitch, the performance of depth predictors improves until scale s=16, when
large void regions are introduced in the generated examples. On the other hand, increasing augmentation scales in roll lead to steady
performance increments. In general, PDA consistently improves depth prediction over a Vanilla model trained without PDA.

firms that the camera pose carries the prior knowledge about
scene depth, especially on floor and ceiling regions.

4. Further Study of PDA Augmentation Scales
We provide a more detailed analysis of Vanilla depth pre-

dictor plus PDA with different scales of pitch and roll, in-
dividually. Please refer to the main paper (Figure 9) for de-
tailed descriptions. As shown in Fig. 4, the performance of
the depth predictor monotonically increase until augment-
ing pitch to the scale of 16. From the visual demonstra-
tions, we believe that the performance drop is due to the
introduction of large void regions. On the other hand, by
rotating roll, we observe steady performance improvement,
which demonstrates that PDA boosts the performance of
depth predictors by generating training examples with di-
verse camera poses.

5. Further Study of Camera Height and Rota-
tion in CPP Encoding

CPP encodes rotation (roll and pitch) and camera height,
however, it is still worth exploring which DOF is more im-
portant in CPP encoding. While it is nontrivial to define
“importance” as pitch/roll and height have different units
and ranges, we did study the pitch and height on Interior-
Net (which has a nearly fixed roll). To apply CPP, we fixed
either pitch or height and only encode the other with the
true value. As shown in Fig. 5, we find that encoding the
true camera height (top plot) performs better than the true
pitch (bottom plot), and both perform better than the vanilla
model. This implies that camera height is “more important”
than pitch (probably roll as well).

Figure 5: Top: CPP encoding with ground-truth camera height
and fixed pitch. Bottom: CPP encoding with ground-truth
pitch and fixed camera height. All models are trained/evaluated
on InteriorNet Natural train/test-set. Comparing two blue or red
curves across two plots, we find that encoding ground-truth height
achieves better performance, suggesting height is “more impor-
tant” than pitch. Moreover, encoding either ground-truth height or
pitch outperforms Vanilla model.

6. CPP Encoding with Predicted Poses

We study CPP to encode predicted poses. Specifically,
we train depth predictors with CPP using true poses on Nat-
ural train-sets of the two datasets (Table 3). We test models
on Natural and Uniform test-sets, respectively. Note that in
testing we encode the predicted poses given by a pose pre-
dictor. As shown in Table 3, CPP with predicted poses still
outperforms Vanilla model; when jointly trained with PDA,
CPP with predicted poses performs even better.
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Table 3: CPP Encoding with Predicted Poses. We train depth
predictors with CPP using true poses on Natural train-sets of the
two datasets. We test models on Natural and Uniform test-sets,
respectively. Note that in testing we encode predicted poses given
by a pose predictor. Clearly, CPP with predicted poses still out-
performs Vanilla model; when jointly trained with PDA, CPP with
predicted poses performs even better. Nevertheless, encoding pre-
dicted poses underperforms encoding true poses.

Models
Natural-Test-Set Uniform-Test-Set

↓ better ↑ better ↓ better ↑ better
Absr/Sqr/RMS-log δ1 / δ2 Absr/Sqr/RMS-log δ1 / δ2

InteriorNet
Vanilla .154 / .148 / .229 .803 / .945 .183 / .146 / .250 .724 / .926
+ CPPpred .142 / .132 / .212 .825 / .951 .164 / .121 / .228 .756 / .946
+ CPP .108 / .120 / .199 .872 / .958 .106 / .088 / .183 .876 / .961
+ Bothpred .135 / .127 / .205 .849 / .955 .148 / .114 / .213 .780 / .952
+ Both .095 / .101 / .180 .898 / .966 .091 / .069 / .161 .903 / .973

ScanNet
Vanilla .125 / .068 / .186 .837 / .962 .177 / .121 / .265 .711 / .928
+ CPPpred .116 / .065 / .180 .852 / .964 .169 / .117 / .255 .731 / .931
+ CPP .108 / .060 / .171 .871 / .965 .154 / .106 / .239 .781 / .943
+ Bothpred .111 / .061 / .173 .866 / .965 .159 / .111 / .247 .773 / .938
+ Both .102 / .052 / .160 .882 / .973 .143 / .097 / .230 .809 / .952

Figure 6: Distribution of pitch, roll and camera height for three
subsets of images from ScanNet. From the Natural subset, we
observe the ScanNet dataset also has a naturally biased distribution
in both pitch, roll and camera height. Please refer to Section 5 in
the main paper on how we construct these three subsets.

7. Additional Details in Experiments

7.1. Image and Depth Preprocessing

All input RGB images are first normalized to the range
of [−1.0, 1.0] and then resized to 240× 320 before feeding
into CNNs. Note that resizing images to 240×320 does not
change their original aspect ratios. For better training, as a
preprocessing step on the depth [1, 2], we apply the follow-
ing operation to rescale depth maps y to get a normalized
map y′:

y′ = (
y − Emin

Emax − Emin
− 0.5) ∗ 2.0, (1)

where Emin = 1.0 and Emax = 10.0 are the minimum and
maximum evaluation values, respective. The above opera-
tion is a map from [1.0, 10.0] to [−1.0, 1.0]. In the litera-
ture, it is reported the model can be trained better in this
scale range [4, 3]. We only compute the loss for pixels that
have depth values between 1.0 and 10.0 meters. We evalu-
ate the depth prediction on the original depth scale. To do
so, we apply an inverse operation of Eq. 1 to the predicted
depth maps. Moreover, we also only evaluate the depth that
lies in [1, 10] meters.

7.2. Pose Prediction Network

When camera poses are not available during testing, we
train a camera pose predictor that predicts camera pitch θ,
roll ω and height h for CPP encoding (i.e., the CPPpred
model). We build the pose predictor over ResNet18 struc-
ture with a new top layer that outputs a 3-dim vector to
regress pitch, roll, and camera height. During training,
we load the ImageNet pretrained weights and finetune the
weights for pose predictions with L1 loss.

7.3. Evaluation Protocol

The depth evaluation range in this work is from 1.0m to
10.0m for both InteriorNet and ScanNet. For each method,
we save a checkpoint every 10 epochs and select the check-
point that produces the smallest average L1 loss on the val-
idation set to report the performance.

7.4. ScanNet Camera Pose Distribution

The camera pose distribution of subsets in ScanNet is
shown in Fig. 6. While it is hard to sample a subset with
exactly uniform distribution w.r.t to all attributes (i.e., pitch,
roll, and camera height), we sample the Uniform subset with
the priority of pitch, roll, height from high to low. As these
subsets differ a lot in terms of camera pose distribution, they
serve our study w.r.t camera distribution bias.
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Figure 7: Depth predictions of Vanilla and our model (jointly applied CPP and PDA) on InteriorNet test-set. From these
images captured under various camera poses, our model predicts better depth than Vanilla model in terms of the overall scale.
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Figure 8: Depth predictions of Vanilla and our model (jointly applied CPP and PDA) on ScanNet test-set. From these images
captured under various camera poses, our model predicts better depth than Vanilla model in terms of the overall scale.
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