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In this supplementary material, we provide additional
analysis and experimental results. In Sec. 1, we present the
details for optimizing the expected mean square error under
assumption of Gaussian distribution. In Sec. 2, we show the
details of the brute force search algorithm. In Sec. 3, we
explain the reason for choosing the Laplace distribution in
the main paper. In Sec. 4, we analysis the theoretical com-
putation cost of the proposed DMBQ and LBA.

1. DMBQ for Gaussian Distribution
As illustrated in Sec. 3.1, the proposed DMBQ method

can be easily migrated to other distribution type. In this
section, we will depict the details for Gaussian case which is
a widely used distribution. Under the Gaussian distribution,
we first normalize the weights, that is rewriting Eq. (5) as,
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where Ψ(q, s) is the primitive function of f(x)(x− q)2 in
the negative x-axis and erf(·) is Gauss Error Function.
qi(ααα) and si(ααα) are not continuous w.r.t ααα which can not
be derived as close form solution, thus we apply the same
brute force searching.

2. The Brute Force Searching Algorithm
As introduced in Sec. 3.1, we use brute force search-

ing to find the optimal coordinates for MBQ under a certain
distribution. Here we present the details of this algorithm.

We generate the search space for coordinate ααα to calcu-
late the quantization levels Q(ααα), i.e., αi (i = 1, 2, ...,M)
from 0 to 10 with resolution of 0.001. Through computing
the objective (Eq. (6)) with respect to different ααα, we could
find the optimal αααbest which corresponds to the minimal
quantization error. The details of the brute force searching
algorithm are concluded in Alg. 1.

Algorithm 1: Brute Force Searching for Optimalααα
Input: bit-width M
Output: αααbest

Generate search space for αi (i = 1, 2, ...,M), i.e.
from 0 to 10 with resolution of 0.001.

Initialize minimal expected mean square error
emin =∞.

for ααα in search space do
Calculate the quantization levels Q(ααα).
Calculate the rounding edges with Eq. (3).
Calculate the expected mean square error e with

Eq. (6).
if e < emin then

emin = e.
αααbest = ααα.

end
end

With the brute force searching, in Laplace case,
we can get the optimal αααbest = [1.0], [1.009,1.591],
[0.832,1.514,1.897], [0.838,1.324,1.619,1.879] for M = 1,
2, 3, 4 respectively, in Gaussian case, we can get the
optimal αααbest = [0.8], [0.521,0.981], [0.445,0.748,0.985],
[0.3,0.547,0.71,1.12]. Then the αααbest can be used to con-
struct lookup table for Q(ααα) w.r.t bit-width for once.

3. Distribution Problem
The most weights of neural network distributed in a cen-

tral symmetric bell-like shape, which is usually modeled by
the Laplace and Gaussian distributions [1]. In our study,
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Table 1. Comparison between Laplace and Gaussian distribution
(ResNet20 on CIFAR10 Dataset).

Assumption Prec (W/A) Top-1

Gaussian
2/2 89.6
3/3 92.5
4/4 92.8

Laplace
2/2 90.7
3/3 92.5
4/4 93.0

Table 2. Computational cost analysis of the proposed DMBQ and
LBA (ResNet18 on ILSVRC12).

Method Prec (W/A) FixOPS Top-1

FP 32/32 1.81G 70.3

DMBQ
2/2 224M 65.1
3/3 357M 69.2
4/4 542M 70.2

DMBQ+LBA
2.0/2.0 298M 67.8
3.0/3.0 413M 70.0

we test several widely used networks, e.g. ResNet, VGG,
ShuffleNet-V2, SqueezeNet, DenseNet-V2, Inception-V3,
and fitting the probability distribution functions of the their
weights with both Laplace and Gaussian, then use KL di-
vergence to measure the similarity between the actual dis-
tribution and fitted distribution. The result shows that up to
85.3% convolution layers are more similar (i.e. with lower
KL divergence) to Laplace than Gaussian. We also make
a comparison between Gaussian and Laplace. Specifically,
we use the above two lookup tables for training-aware quan-
tization with ResNet20 on CIFAR10 Dataset. The results
are shown as Table 1, and the accuracy in Laplace case is
always not inferior to the accuracy in Gaussian, especially
in 2/2 bit. Thus we choose Laplace distribution in the main
paper. However, the distribution of weights is complicated
for some very few layers in which cases the choice of dis-
tribution is still an open problem.

4. Computation Cost
In this section, we analyze the theoretical computational

cost of the proposed DMBQ and LBA. In order to com-
pare the operations with different bit-width, we use FixOP
computation scheme introduced by Li et al. [2] where one
FixOP is defined as one operation between 8-bit activation
and 8-bit weight which is equivalent to 64 binary opera-
tions. We implement our experiments on ResNet18 with
ILSVRC12 dataset and the implementation details are in-
cluded in the main paper.

As shown in Table 2, Our DMBQ with 4/4-bit quanti-
zation scheme has only 0.1% degradation on Top-1 accu-
racy with 3.34× acceleration, and Our DMBQ+LBA with

3.0/3.0-bit quantization scheme has only 0.3% degradation
on Top-1 accuracy with 4.38× accelerate. The promising
results exhibit the potential of deployment on hardwares
with limited memory and computing power.
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