
Few-shot 3D Point Cloud Semantic Segmentation – Supplementary Material

This appendix contains the splitting details of the S3DIS
and ScanNet datasets (Section A), more framework details
including the architecture of EdgeConv (Section B.1) and
the settings of three hyper-parameters (Section B.2).

A. Dataset Split
Table 1 lists the class names in each split of the S3DIS

and ScanNet datasets.

split=0 split=1

S3DIS beam, board, bookcase,
ceiling, chair, column

door, floor, sofa, table,
wall, window

ScanNet
bathtub, bed, bookshelf,
cabinet, chair, counter,
curtain, desk, door, floor

otherfurniture, picture,
refrigerator, show cur-
tain, sink, sofa, table,
toilet, wall, window

Table 1: Test class names for each split of S3DIS and Scan-
Net.

B. More Framework Details
B.1. EdgeConv architecture details

Figure 1 illustrates the architecture and configuration of
EdgeConv, which is a basic block of the feature extractor. To
perform graph CNN, a k-NN graph is dynamically computed
from the input point-wise features to EdgeConv. Note that
this k-NN graph is different from the k-NN graph in Section
3.2.3. We set k = 20 in our experiments. Each point xi in
the point cloud is concatenated with its translated neighbor
point (xj−xi), which is yielded by translating xj to the local
system with xi as the center. Consequently, a N × k × 2fin
feature tensor is produced from the input tensor N × fin
and further passed to two MLP layers. Finally, EdgeConv
aggregates the resultant feature tensor over the k neighboring
features using a max-pooling operator to generate the output
point-wise features.

N
	x
	f i

n

index max
pooling N

	x
	6
4

k-NN	graph

N
	x
	k
	x
	2
f in

… …

input	features

xi

xj

[xi;	xj -xi]

MLP	(64,64)

N
	x
	k
	x
	6
4

output	features

Figure 1. The architecture of EdgeConv component in the embed-
ding network.

B.2. Hyper-parameter settings

As mentioned in Section 4.4, we empirically find that the
optimal value of σ varies in different datasets. Additionally,
we also observe varying optimal number of prototypes per
class n under different few-shot settings. Table 2 shows
the optimal value of n in different few-shot settings. It
can be seen that n becomes larger when the number of shots
increases. This is reasonable since more shots result in larger
number of observed support points for each class, which
requires larger n to model the larger variety. From Table 2,
we also observe that n becomes larger when the number of
“ways” increases. This is probably due to the more difficult 3-
way segmentation requires fine-grained multi-prototypes for
each class. We set k = 200 for the k-NN graph mentioned
in Section 3.2.3 on all few-shot settings in both datasets.

2-way 1-shot 2-way 5-shot 3-way 1-shot 3-way 5-shot
n = 100 150 150 300

Table 2: The value of n in different few-shot settings.


