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1. Theoretical Results

1.1. Proofs

This section provides detailed proofs on how Eq. (2) is
simplified to Eq. (5) in the main paper. We begin by intro-
ducing the following two propositions on MI.

Proposition 1. Given any three random variables x, y and
z, with a joint distribution p(x,y, z). If y and z are in-
dependent and conditionally independent, i.e., p(y, z) =
p(y)p(z) and p(y, z|x) = p(y|x)p(z|x), we have that,

I(x;y, z) = I(x;y) + I(x; z).

Proof. We start by applying the chain rule to I(x;y, z):

I(x;y, z) = I(x;y|z) + I(x; z).

Then we have,

I(x;y|z) =
∑
z

∑
y

∑
x

p(x,y, z) log
p(x,y, z)p(z)

p(x, z)p(y, z)

=
∑
z

∑
y

∑
x

p(x,y, z) log
p(x|y, z)
p(x|z)

,
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and,

I(x; z) =
∑
z

∑
x

p(x, z) log
p(x, z)

p(x)p(z)

=
∑
z

∑
x

p(x)p(z|x) log p(x|z)p(z)
p(x)p(z)

=
∑
z

∑
x

p(x)p(z|x) log p(x|z)
p(x)

=
∑
z

∑
y

∑
x

p(x)p(y|x)p(z|x) log p(x|z)
p(x)

=
∑
z

∑
y

∑
x

p(x)p(y, z|x) log p(x|z)
p(x)

=
∑
z

∑
y

∑
x

p(x,y, z) log
p(x|z)
p(x)

.

After combining them together, we can show that,

I(x;y, z) =
∑
z

∑
y

∑
x

p(x,y, z) log
p(x|y, z)
p(x)

=
∑
z

∑
y

∑
x

p(x,y, z) log
p(y, z|x)
p(y, z)

=
∑
z

∑
y

∑
x

p(x,y, z) log
p(y|x)p(z|x)
p(y)p(z)

=
∑
z

∑
y

∑
x

p(x,y, z) log

[
p(y|x)
p(y)

p(z|x)
p(z)

]
.

Hence, we can rewrite I(x;y, z) as:

I(x;y, z) =
∑
z

∑
y

∑
x

p(x,y, z) log
p(y|x)
p(y)

+
∑
z

∑
y

∑
x

p(x,y, z) log
p(z|x)
p(z)

.
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According to the definition of MI, we have that,∑
z

∑
y

∑
x

p(x,y, z) log
p(y|x)
p(y)

=
∑
z

∑
y

∑
x

p(x)p(y|x)p(z|x) log p(y|x)
p(y)

=
∑
y

∑
x

p(x,y) log
p(y|x)
p(y)

= I(x;y),

and, ∑
z

∑
y

∑
x

p(x,y, z) log
p(z|x)
p(z)

=
∑
z

∑
y

∑
x

p(x)p(y|x)p(z|x) log p(z|x)
p(z)

=
∑
z

∑
x

p(x, z) log
p(z|x)
p(z)

= I(x; z),

which prove the proposition.

The next proposition is a minor adaptation of [20] ac-
cording to Data Processing Inequality (DPI) [3].

Proposition 2 (Shwartz & Tishby [20]). Given any two ran-
dom variables x and y, and any representation variable z,
defined as a (possibly stochastic) map of the input x, we
have the following DPI chain:

I(x;y) > I(z;y).

As defined in the main paper, we let xi denote the given
2D pose from the i-th view. We are interested in learning
an encoding network E that produces a view representa-
tion zi

v , and a pose representation zi
p from the input xi.

For simplicity, we define an optimal intermediate represen-
tation zi that satisfies p(·, zi) = p(·, zi

p, z
i
v), and we have

I(·; zi) = I(·; zi
p, z

i
v). Therefore, based on Proposition 1,

the following equation holds:

I(xi; zj
p, z

i
v) = I(xi; zj

p) + I(xi; zi
v).

According to Proposition 2, we have that,

I(xi; zj
p) > I(zi; zj

p) = I(zi
p, z

i
v; z

j
p).

After applying Proposition 1, we have that,

I(zi
p, z

i
v; z

j
p) = I(zi

p; z
j
p) + I(zi

v; z
j
p).

As zi
v and zj

p are independent (mutually exclusive), it holds
that I(zi

v; z
j
p) = 0. Therefore, we have that,

I(xi; zj
p) > I(zi

p, z
i
v; z

j
p) = I(zi

p; z
j
p).

Similarly, we have that,

I(xi; zi
v) > I(zi; zi

v) = I(zi
p, z

i
v; z

i
v)

= I(zi
p; z

i
v) + I(zi

v; z
i
v)

= I(zi
p; z

i
v) + I(zi

v; z
i
v)

= H(zi
v),

where H is the Shannon entropy which is always non-
negative, i.e.,H > 0. Then, we have that,

I(xi; zj
p, z

i
v) > I(zi

p; z
j
p) +H(zi

v) > I(zi
p; z

j
p).

Finally, we can obtain that,∑
i

I(xi; zi
p, z

i
v) +

∑
i6=j

I(xi; zj
p, z

i
v)

>
∑
i

I(xi; zi
p, z

i
v) +

∑
i 6=j

I(zi
p; z

j
p),

which demonstrates the claim.

1.2. Relation to Cross Reconstruction

In this section, we provide an intuitive explanation on
the relationship between the proposed cross-view MI max-
imization and the conventional methods based on cross re-
construction [14, 16, 17, 18]. According to [7], in the con-
text of representation learning, given the input x and its rep-
resentation z encoded by a neural network, the reconstruc-
tion error can be related to the MI as follows:

I(x; z) = H(x)−H(x|z) > −H(x|z)

=
∑
z

∑
x

p(x, z) log p(x|z)

=
∑
z

∑
x

p(x)p(z|x) log p(x|z)

>
∑
x

p(x)
∑
z

p(z|x) log p(x|z)

= Ex∼p(x)
{
Ez∼p(z|x) [log p(x|z)]

}
,

where the inequality in the second-to-last line is achieved
according to Jensen’s inequality if we assume that the prob-
ability density functions are convex.

In typical settings of reconstruction, p(z|x) can be in-
terpreted as an encoder while p(x|z) is the decoder. For
example, the Variational Auto-Encoders (VAEs) [11] ap-
proximate p(z|x) by a tractable variational distribution
q(z|x) with the KL divergence term DKL[q(z|x)‖p(z)]
which ensures that the learned distribution q is similar to
the true prior distribution. To maximize the above ob-
jective, reconstruction-type methods usually minimize the
mean squared error between the input and reconstruction if
a Gaussian distribution is assumed or binary cross-entropy
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loss if a Bernoulli distribution is assumed. Therefore, intu-
itively, the reconstruction-type objective is a lower bound of
MI, and similar conclusions exist for other generative mod-
els based on reconstruction [1, 6].

We can easily extend the above formulation to the pro-
posed cross-view MI maximization setup in the main paper,
where we have that,∑

i

I(xi; zi
p, z

i
v) +

∑
i6=j

I(xi; zj
p, z

i
v)

>
∑
i

Ep(xi)

{
Ep(zi

p,z
i
v|xi)

[
log p(xi|zi

p, z
i
v)
]}

+
∑
i 6=j

Ep(xi,xj)

{
Ep(zj

p,zi
v|xi,xj)

[
log p(xi|zj

p, z
i
v)
]}
,

where we can see that in an approximate sense, the existing
methods for view-disentangled representation learning [14,
16, 17, 18] based on cross-reconstruction maximize a lower
bound of the proposed cross-view MI maximization.

2. Implementation Details
2.1. Representation Learning

The backbone network architecture for our encoding net-
work E is based on [12]. We use two residual blocks, batch
normalization, 0.25 dropout, and no maximum weight norm
constraint [12]. Both the likelihood estimation network Q
and discriminator D are implemented by multi-layer per-
ceptrons (MLPs). To be specific, Q consists of two fully-
connected layers where the first layer is followed by the
batch normalization and ELU activation [2]; D contains
three fully-connected layers where the first two layers are
followed by the ReLU activation. All these networks are
trained using AdaGrad [4] with a fixed learning rate of 0.02
for optimization. For fair comparisons, all the representa-
tion learning methods compared to in the experiments also
use the same architecture and training setup as described
here. We also note that the learned representations are fixed
during downstream training.

2.2. Action Recognition

Penn Action. We use a simple temporal convolution
network to extract temporal features from per-frame pose
representations generated by the encoding network. Table 1
presents the architecture of this network. We use Adam [10]
with a fixed learning rate of 1.0×10−5 for optimization. We
set the size of mini-batches to 64 and the network is trained
for 1 × 106 iterations. During network training, we per-
form data augmentation by randomly horizontally flipping
all frames in a video.

NTU-RGB+D. We use ResNet1D which is a modified
version of [5] as the backbone network for action recog-
nition on this dataset. Its detailed network architecture is

Layer Output Size Setting

Conv1D 166× 64 1× 7, stride 2, BN, ReLU, 0.5
Conv1D 83× 128 1× 7, stride 2, BN, ReLU, 0.5
Conv1D 42× 256 1× 7, stride 2, BN, ReLU, 0.5

Pooling 256 global average pooling
Dense 14 SoftMax

Table 1. Architecture used on Penn Action [23]. The setting of
“1 × 7, stride 2, BN, ReLU, 0.5” refers to 1D Convolution with
kernel size of 1 × 7 and stride 2 followed by batch normalization
(BN), ReLU activation, and a dropout layer with 0.5 drop rate.

Layer Output Size Setting

Conv1D 300× 64 1× 7, stride 1, BN, ReLU

R-Conv1D 1× 7, stride 2, BN, ReLU, 0.5
1× 5, stride 1, BN, ReLU, 0.5

1× 3, stride 1, BN
Shortcut 150× 64 1× 1, stride 2, BN, ReLU

R-Conv1D 1× 7, stride 2, BN, ReLU, 0.5
1× 5, stride 1, BN, ReLU, 0.5

1× 3, stride 1, BN
Shortcut 75× 128 1× 1, stride 2, BN, ReLU

R-Conv1D 1× 7, stride 1, BN, ReLU, 0.5
1× 5, stride 1, BN, ReLU, 0.5

1× 3, stride 1, BN
Shortcut 75× 256 1× 1, stride 1, BN, ReLU

Pooling 256 global average pooling
Dense 49 SoftMax

Table 2. Architecture used on NTU-RGB+D [19]. R-Conv1D rep-
resents the residual layer introduced in [5]. The setting of “1× 7,
stride 2, BN, ReLU, 0.5” refers to 1D Convolution with kernel size
of 1×7 and stride 2 followed by batch normalization (BN), ReLU
activation, and a dropout layer with 0.5 drop rate.

shown in Table 2. We use Adam [10] with a fixed learn-
ing rate of 1.0 × 10−3 for training the network. We set the
size of mini-batches to 64 and the network is optimized for
1 × 106 iterations. Following the practice of [22], no data
augmentation is performed during training on this dataset.
We only use single-person action categories, including ac-
tion labels from A1 to A49, in this experiment.

3. Additional Results
Effectiveness of Camera Augmentation. We evaluate

the effectiveness of camera augmentation by training a vari-
ant of CV-MIM where camera augmentation is not utilized.
As shown in Table 3, training with camera augmentation
leads to around 1% and 2% performance improvements on
Penn Action and NTU-RGB+D, respectively.

More Results on NTU-RGB+D. We report the classifi-
cation accuracy and standard deviation of different models
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Methods Penn Action [23] NTU-RGB+D [19]

CV-MIM 91.75 ± 0.24 56.50 ± 0.13
CV-MIM w/o CA 90.75 ± 0.30 54.50 ± 0.22

Table 3. Classification accuracy (%) and standard deviation of CV-
MIM with or without camera augmentation (CA) on Penn Ac-
tion [23] and NTU-RGB+D [19] with the setting of single-shot
cross-view action recognition.

on NTU-RGB+D with the setting of single-shot cross-view
action recognition averaged over five repeated runs. Table 4
shows the results. We can see that our method achieves the
best mean accuracy and smallest standard deviations.

More Results with Limited-Supervision. We provide
additional comparisons with view-disentangled representa-
tion learning baselines under limited-supervision. Results
on Penn Action [23] and NTU-RGB+D [19] are reported in
Tables 5 and 6, respectively. We can see that the proposed
CV-MIM outperforms other methods by a large margin con-
sistently under different ratios of training data.

View Classification. We explore the utility of learned
view representations by applying them to the task of view
classification on Penn Action [23]. In this experiment, our
target is to predict the view category, i.e., left, right, front, or
back, for each frame in a video. This is achieved by train-
ing a linear classifier which takes the learned view repre-
sentations as input and it is trained by the ground truth view
labels provided by this dataset. We use AdaGrad [4] with
a fixed learning rate of 1.0 × 10−2 for training the classi-
fier. We set the size of mini-batches to 64 and the classifier
is optimized for 1 × 104 iterations. The data split of the
fully-supervised setting is utilized to train and evaluate all
view-disentangled representation learning approaches. We
also compare our method to a baseline which directly takes
raw 2D poses as input.

Table 7 shows the results of each method. We observe
that our model obtains the best performance among rep-
resentation learning methods, and we also outperform the
baseline taking 2D poses. These results demonstrate that
our learned view representations manage to encode effec-
tive view information for 2D poses, and can serve as a
strong model for view-relevant downstream tasks.

More Visual Results. We show more qualitative results
when using the learned representations of our model for
nearest neighbor retrieval on Human3.6M [8] in Fig. 1. We
also show additional nearest neighbor retrieval results when
applying our model on MPI-INF-3DHP [13] in Fig. 2. In-
terestingly, we find that our learned representations are able
to generalize to new views and new poses contained in MPI-
INF-3DHP.
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Figure 1. Nearest neighbors in the representation space using subjects S9 and S11 on Human3.6M [8]. The first two rows use pose
representations, while the second two rows use view representations. On each row, we show the query on the left and its top five nearest
neighbors on the right.
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Figure 2. Nearest neighbors in the representation space on MPI-INF-3DHP [13]. The first three rows use pose representations, while the
second three rows use view representations. On each row, we show the query on the left and its top five nearest neighbors on the right.
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