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A. Visualization of the target domain

To better understand the advantage of the meta-learning
strategy, we visualize the distributions of the inference
features of the target domain (Market-1501 testing set)
in Fig. A. Both baseline and M3L are trained with
DukeMTMC-reID, CUHK03, and MSMT17, and the infer-
ence features are obtained by 7 persons in the Market-1501
testing set. We use t-SNE [3] to reduce the features into
a 2-D space. Different colors denote different identities.
As shown in Fig. A, compared with the baseline, our M3L
pushes the features of the same identity more compact and
pull the features of different identities more discriminating.
This suggests that the proposed M3L leads the model to
learn more generalizable representations that can perform
well on unseen domains.

(a) Baseline (b) M3L
Figure A: t-SNE [3] visualization of 7 persons in the unseen
target dataset (Market-1501 testing set). The color indicates
the identity. Results are evaluated on (a) baseline and (b)
M3L, both of which are trained with ResNet-50.
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Table A: Results on different number of training IDs (the
improvement in red).

Loss Meta #training IDs (D+MS+C→M) Rank-1 accuracy
50 100 500 1,000 3,110

LFCG
× 27.1 35.2 48.5 54.5 67.0
X 30.2 (3.1) 37.3 (2.1) 49.0 (0.5) 55.3 (0.8) 68.3 (1.3)

LFCP
× 27.1 35.2 48.5 54.5 67.0
X 28.7 (1.6) 36.8 (1.6) 49.4 (0.9) 55.9 (1.4) 69.3 (2.3)

LM
× 27.6 34.6 51.6 59.6 67.9
X 28.0 (0.4) 35.3 (0.7) 53.8 (2.2) 63.4 (3.8) 74.5 (6.6)

B. Detailed comparison of different classifiers
Meta-learning is effective with the FC-based classifiers

in many tasks, e.g., few-shot learning [1, 2]. However,
we found that the advantage of meta-learning with the
FC-based classifiers will be degraded when the number of
classes (IDs) is large. In Table A, we compare the results of
three kinds of classifiers with different number of training
IDs (#training IDs). With fewer IDs, the FC-based clas-
sifiers achieve higher improvement. However, with the in-
crease of IDs, the memory-based classifier gains higher im-
provement. Hence, we conclude that the FC-based classi-
fiers are not suitable for meta-learning when the the number
of classes is large. Thus, the large number of IDs in ReID
leads the FC-based classifiers to produce inferior improve-
ments than the memory-based classifier with meta-learning.
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