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A. Least Squares Fitting of A Sphere to Ob-
served Points

We introduce how to estimate the center t̄ and the ra-
dius r̄ given the observed points {p} using least squares,
by solving the following problem. Its solution can be easily
obtained in a closed form.
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Its closed-form solution is given by

r̄ =
√
b4 + ‖b[1:3]‖22,

t̄ = b[1:3],
(ii)

where b can be computed by (ATA)−1ATy.

B. Minimum Spanning Tree for a Global Post-
Optimization of Local Sign Flipping

I explain here how we have used minimum spanning tree
(MST) in Section 4.3 for a global post-optimization of local
sign flipping. Simply put, MST grows a set VMST as a tree
by selecting the vertices from V . Starting from VMST = ∅,
MST randomly selects a vertex from V , denoted as v1, and
assigns h(v1) = 1. The tree then grows iteratively by se-
lecting from V/VMST the vertex that has the lowest edge
weight in W to connect with any vertex in VMST, and en-
sures not to form a closed loop with those previous selected
edges. In any iteration, denote the selected edge as ei,j ,
vj ∈ V/VMST is the selected vertex and vi is the corre-
sponding vertex already in VMST; we set h(vj) = h(vi)

when w1
i,j(ei,j) < w0

i,j(ei,j), and h(vj) = −h(vi) other-
wise. The tree is spanned until |VMST| = |V|, and we have
the signs {h(vi)}Ni=1 determined for all the vertices by then.

C. Proof of Corollary 4.1
Corollary 4.1. Let f : R3+d → R be an l-
layer MLP with ReLU activation ν. That is, f(p, z) =
wT ν(W l(· · · ν(W 1

pp + W 1
zz + b1)) + bl) + c, where

W 1
p ∈ Rd1out×3 and W 1

z ∈ Rd1out×d denote the weight ma-
trices of the first layer, and b1 ∈ Rd1out denotes the bias;
W i ∈ Rdiout×d

i−1
out and bi ∈ Rdiout denote parameters of the

ith layer; w ∈ Rdlout and c ∈ R are parameters of the last
layer; p ∈ R3 is the input point, and z ∈ Rd is the latent
code, whose elements follow the i.i.d. normal N (0, σ2

z).
Let w =

√
π
dlout

1, c = −r̄, r̄ > 0, let all entries of W i

(2 ≤ i ≤ l) follow i.i.d. normal N (0, 2
diout

), let entries

of W 1
p follow i.i.d. normal N (0, 2

d1out
), and let bi = 0

(2 ≤ i ≤ l). If W 1
z = W 1

p [I ∈ R3×3,0 ∈ R3×(d−3)]
and b1 = −W 1

p t̄, then limσz→0 f(p, z) = ‖p − t̄‖ − r̄.
That is, f is approximately the signed distance function to
a 3D sphere of radius r̄ centered at t̄.

Proof. To prove this theorem, we reduce the problem to a
single hidden layer network. By plugging W 1

z , b1 in f we
get f(p, z) = wT ν(W 1

p (p+z[1:3]− t̄))+c. Let x ∈ R3 =
p + z[1:3] − t̄ and further plug w, c in f , we get f(x) =√

π
d1out

∑d1out
i=1 ν(w1

i,: ·x)−r̄, where w1
i,: is the ith row of W 1

p .

Let µ denotes the density of multivariate normal distribution
N (0, 2

d1out
Id1out

). The first term of f(x) converges to ‖x‖,
which is a direct consequence following Theorem 2 in [2].
In other words, f(p, z) ≈ ‖p− t̄+z[1:3]‖− r̄ ≈ ‖p− t̄‖− r̄
when σz → 0. Note that to make the assumption of b1 and
W 1

z to be true, d1
out should satisfy d1

out ≥ 3.

D. Ablation Studies
Initialization for Signed Solutions – To evaluate the ad-
vantages of our proposed initialization for signed solution



presented in Section 4.2.2, we conduct experiments that op-
timize SAIL-S3 with or without using the proposed initial-
ization. Figure a shows that replacing our geometric initial-
ization with random initialization will generate results of
isolated surface stripes, which are extracted from the incor-
rect signed solutions of implicit fields.

W/O proper initialization SAIL-S3

Figure a: Without proper initialization, the learned local im-
plicit function outputs +/− boundaries only at isolated field
regions (i.e. grey stripes in the left figure); note that only
these boundaries can be extracted as surfaces via Marching
Cubes [8].

Local Sign Flipping – Fig. b shows that switching off the
local sign flipping presented in Section 4.3 would make the
signs of different subfields inconsistent, ultimately resulting
in surfaces with artifacts.

W/O proper sign flipping SAIL-S3

Figure b: Without proper sign flipping, the resulting mesh
may have blocky defects.

Interpolation of Local Fields – The validity of the pro-
posed interpolation of local subfields can be checked by
substituting with interpolation by max pooling or average
pooling, as shown in Fig. c.

Max Average SAIL-S3

Figure c: Example results of ablation study among interpo-
lation by max pooling, interpolation by average pooling and
our weighted interpolation.

E. Additional Qualitative Results

More qualitative results are given in Figure d, Figure e
and Figure f. Our results are better than existing ones in
terms of recovering smoother surfaces with more details.

F. Quantitative Results for Robustness Evalu-
ation

Table 1 shows the quantitative results for our robustness
evaluation presented in Section 5.2. The CD results confirm
that our method is more robust against noisy observations.

Methods CD@0.01 ↓ CD@0.005 ↓ CD@0.001 ↓
SPSR [7] 0.023 0.020 0.003
IGR [5] 0.035 0.018 0.008
SAL [2] 0.014 0.012 0.010
LIG [6] 0.013 0.008 0.007
CON [9] 0.016 0.014 0.011
P2S [4] 0.008 0.008 0.005
SAIL-S3 0.004 0.003 0.003

Table 1: Quantitative results for noisy point clouds of sculp-
tures in ThreeDScans [1]. For CD, the smaller, the better.
@0.01, @0.005, and @0.001 denote the levels (standard
deviations) of Gaussian noise.
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Figure d: Additional qualitative reconstruction results of ShapeNet [3] (top three rows) and ThreeDScans [1] (bottom two
rows), black regions of the input point cloud denote incorrect normal orientation. Note that IGR [5] and SAL [2] belong to
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the differences among the comparative methods.
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Ours use 5 layer mlp

Input PC SPSR [7] IGR [5] SAL [2] LIG [6] CON [9] P2S [4] SAIL-S3 GT
Figure e: Qualitative results of different methods when adding point-wise Gaussian noise of standard deviation 0.001 to input
points of sculptures in ThreeDScans [1]. Black points on the three inputs denote incorrect estimations of normal orientations.
Note that IGR and SAL belong to global fitting methods, and LIG, CON, and P2S belong to locally learned methods.
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Input PC SPSR [7] IGR [5] SAL [2] LIG [6] CON [9] P2S [4] SAIL-S3 GT
Figure f: Qualitative results of different methods when adding point-wise Gaussian noise of standard deviation 0.005 to input
points of sculptures in ThreeDScans [1]. Black points on the three inputs denote incorrect estimations of normal orientations.
Note that IGR and SAL belong to global fitting methods, and LIG, CON, and P2S belong to locally learned methods.


