
A. Algorithms
We list the training and translation (sampling) strategy in

Algorithm 1 and Algorithm 2, respectively.

Training To learn the latent energy-based model Ex→y ,
we take the latent codes zy of the target domain PY as our
ground truth data. The latent codes zx of the source do-
main PX serve as the initial samples of the latent MCMC
as shown in Eq. 6. The training algorithm follows:

Algorithm 1: Latent Energy-based Model Training

Input: source domain PX , target domain PY
Output: latent energy function Ex→y
while not converged do

# Draw source and target domain image x and y
x ∼ PX , y ∼ PY
# Encode sample z̃0y and target zy
z̃0y = zx = Enc(x) ,zy = Enc(y)
# MCMC to sample z̃Ty
for t = 1 : T do

Update z̃ty according to Eq. 6
end
# Update Ex→y based on z̃Ty and zy
Update Ex→y according to Eq.2

end

Translation Given an input image, the translation process
is simple.

Algorithm 2: Latent Energy Transport for Translation

Input: x
Output: y
z0y = zx = Enc(x)

for t = 1 : T do
Update zty according to Eq. 6

end
y = Dec(zTy )

B. β-VAE
We adopt the open-source code in https://github.

com/1Konny/Beta-VAE. We keep all the settings the
same but set the latent dimension at 32. We construct the
latent EBM as an one-hidden-layer MLP (32-64-1) and use
LeakyReLU for activation. We use SGD for optimization
with learning rate 0.1. The MCMC sampler is ran for 10
steps and the step size is 0.1. More results are given in
Figure 10 and Figure 11.

C. ALAE
We adopt the open-source code in https://github.

com/podgorskiy/ALAE and keep all the settings the
same. Implementation details have been given in the main
part. More results are given in Figure 12.
Evaluation protocol: For FID evaluations, we follow the
protocol in Appendix C of StarGAN v2, and the public
code can be found at github.com/clovaai/stargan-
v2. Specifically, FID is calculated between translated
test images and training images. We report the average
FID of each pair of domains. For KID evaluation, we
adopt the source code from github.com/taki0112/

GAN_Metrics-Tensorflow, which has also been used in
CF-EBM.

D. VQ-VAE-2
We adopt the open-source code in https://github.

com/rosinality/vq-vae-2-pytorch. We keep
all the settings the same but set the codebook dimesnion
at 32 and codebook size at 256. In Table 8, we evaluate
the reconstruction error when the codebook design varies.
Figure 13 demonstrates the high reconstruction quality on
AFHQ. The latent EBM resembles the discriminator of Big-
GAN [3]. We use Adam for optimization where the learn-
ing rate is set at 0.001. We run the latent transport for 40
steps with a step size 1.0. We pretrain the VQ-VAE-2 on
the whole AFHQ dataset including all the three domains cat,
dog and wildlife. Therefore, if we want to obtain a model
translating any two domains, the overall efficiency will be
even higher than CUT as seen in Table 6.
More comparisons with CF-EBM: We present more re-
sults in Table 7.

Datasets cat→ dog dog → cat vangogh→ photo

CF-EBM 6.20 9.21 4.49
Ours 6.01 7.45 4.61

Table 7. More KID comparisons with CF-EBM.

More results In Figure 14, we compare the translation re-
sults under various pretraining settings and a baseline model
CUT [31]. We observe although the autoencoder is pre-
trained with a totally irrelevant dataset, we still can gen-
erate reasonable translations. Compared with our standard
setting (a) and the baseline CUT, our model demonstrates
better style controllability and content preservation ability.
Figure 15 gives extended comparisons on AFHQ cat→ dog.
Figure 16 provides additional translation results on AFHQ
dog→ cat, cat→ wild, dog→ wild and wild→ cat.
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Figure 10. More uncurated results based on β-VAE. (Top) Male to Female; (Bottom) Female to Male. x: the input, x̃: the reconstruction,
y: the translated output.

Figure 11. Smooth unpaired image-to-image translation dynamics via MCMC. The leftmost column is the input.



Figure 12. More 10242-pixel image translation dynamics based on ALAE. (Top) Female to Male, (Bottom) Male to Female.



Figure 13. VQ-VAE-2 reconstructions on AFHQ. (Top) Inputs, (Bottom) Reconstructions.

Figure 14. Uncurated translation results on orange→ apple. (a)-(d) denote different pretraining settings. (a) Pretrain on apple2orange. (b)
Pretrain on ImageNet. (c) Pretrain on CelebA-HQ. (d) Pretrain on AFHQ. The last row shows the results from CUT [31].

Figure 15. Extended translation results on AFHQ cat→ dog based on VQ-VAE-2.



Figure 16. Additional translation results on AFHQ based on VQ-VAE-2. From Top to Bottom: dog→ cat, cat→ wild, dog→ wild, wild
→ cat.

D
S

128 256 512

1 - 4.73 4.59
2 - 2.84 2.62
4 - 2.67 2.53
8 - 2.40 2.38

32 2.62 2.38 2.29
64 - 2.31 2.07

Table 8. VQ-VAE-2 reconstruction quality (MSE:10−3) under var-
ious codebook configurations in AFHQ. Each column varies the
codebook dimension (D) and each row varies the codebook size
(S).


