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Abstract

In this supplementary material, we further show our
weak label (the fixation guided scribble annotation) and
configuration comparison of our method and existing meth-
ods. We also show other prediction boosting techniques and
more qualitative comparison.

1. Fixation Guided Scribble Annotation
In Figure 1, we visualize more samples to show the scrib-

ble annotation in the proposed dataset. During annotating,
an annotator is required to look the at RGB image(Figure 1
(a)) and the fixation map (Figure 1 (b)) at the same time.
Based on this, the annotator annotates the foreground in ob-
jects with peak response regions and background in other
regions, and we then obtain our scribble annotation (Fig-
ure 1 (d)). Note that, in the whole process of annotating,
the clean GT (Figure 1 (c)) is not available to the annotator.
Our dataset will be released to the public.

2. Configuration Comparison
We show more detailed configurations of our method and

competing methods in Table 1, which clearly shows that our
model has the cheapest condfiguration, leading to the least
effort of annotation. Meanwhile, the efficiency of our model
during inference further illustrates the effectiveness of our
solution.

3. Effectiveness of boosting
Apart from the proposed saliency boosting strategy, we

also try a traditional boosting strategy, named Ours-b. In
this setting, we first use our scribble label to train the model.
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After several epochs of training, we adopt the prediction
from the model as the pseudo label to finetune the whole
model. From Table 2, we can find that Ours-b can bring
improvements to on VOS [8], DAVIS [12] and FBMS [11].
While our boosting strategy can bring improvements and
show effectiveness on more datasets. In Figure 2, we il-
lustrate the comparison of pseudo labels from our strategy
(Figure 2 (c)) and from the traditional strategy (Figure 2
(d)). It is clear that, our pseudo labels are closer to the clean
GT (Figure 2 (b)).

4. Qualitative Comparison
In Figure 3, we visualize more samples from the testing

sets of DAVSOD and DAVIS to compare our performance
with competing techniques to further show the superior per-
formance of our solution.
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Figure 1. The fixation guided scribble annotation, where we obtain the sequence of scribble labels(d) with the temporal information from
fixation annotation(b).



Table 1. Network setting of competing methods and ours. T.D. = Training data. DUTS [15]; MSRA10K [1]; S-DUTS [21]; HKU-IS [6];
DUTO [20]; DAVIS [12]; DAVSOD [2]; VOS [8]; FBMS [11]; ViSal [16]; SegV2 [4]

Method Ours SSOD[21] EGNet[22] SCRN[18] PoolNet[9] FCNS[17]

Time (s) 0.035 0.166 0.020 0.029 0.033 0.470

Backbone ResNet-50 VGG-16 ResNet-50 ResNet-50 ResNet-50 VGG-16

T.D.
S-DUTS

DAVSOD-S DAVIS-S

S-DUTS

DAVSOD-S DAVIS-S
DUTS DUTS DUTS

MSRA10K DUTO

FBMS SegV2

Method PDB[14] FGRN[5] MGA[7] RCRNet[19] SSAV[2] PSCA[3]

Time (s) 0.050 0.090 0.070 0.037 0.050 0.010

Backbone ResNet-50 ResNet-101 ResNet-101 ResNet-50 ResNet-50 MobileNetV3

T.D.
pretrain:DUTO MSRA10K

train:DAVIS

SegV2 FBMS

DAVIS

DUTS DAVIS

FBMS

MSRA10K HKU-IS

train:VOS DAVIS FBMS

DUTO DAVSOD

DAVIS

DUTS DAVSOD

DAVSOD

Method TENet[13] MuG[10]

Time (s) 0.060 0.600

Backbone ResNet-50 ResNet-50

T.D.
DUTS DAVIS

DAVSOD
OxUvA

Table 2. Performance of our ablation study related experiments.

Method
VOS DAVIS DAVSOD FBMS SegV2 ViSal

Sα ↑ Fβ ↑ M ↓ Sα ↑ Fβ ↑ M ↓ Sα ↑ Fβ ↑ M ↓ Sα ↑ Fβ ↑ M ↓ Sα ↑ Fβ ↑ M ↓ Sα ↑ Fβ ↑ M ↓
Ours 0.750 0.666 0.091 0.828 0.779 0.037 0.705 0.605 0.103 0.778 0.786 0.072 0.804 0.738 0.033 0.857 0.831 0.041
Ours-b 0.753 0.678 0.089 0.836 0.800 0.036 0.690 0.575 0.110 0.786 0.778 0.075 0.804 0.728 0.033 0.836 0.808 0.054
Ours* 0.765 0.702 0.089 0.846 0.793 0.038 0.694 0.593 0.115 0.803 0.792 0.073 0.819 0.762 0.033 0.883 0.875 0.035
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Figure 2. Boosting strategy comparison.
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Image GT MGA RCRNet SSAV PSCA TENet SSOD GF Ours
Figure 3. Qualitative comparison with state-of-the-art video salient object detection methods. MGA [7]; RCRNet [19]; SSAV [2]; PSCA
[3]; TENet [13]; SSOD [21]; GF [16].


