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A. Difficulties Of Accounting For All Terms
In the main paper, we described at a high level, the

problem of bookkeeping all covariances Σ and cross-
correlations E because the number of terms grow very
rapidly. Here, we provide the low-level details of
where/why this problem arises and strategies to address it.

A.1. A 1-D Convolution Without Overlap: Expo-
nential Explosion

As shown in Table. d, even if we only consider a simple
case – a 1-D convolution network with a kernel size k = 3,
we run into problems with a naive bookkeeping approach.
Let us analyze this at the last layer and trace back the num-
ber of terms that will contribute to it.

In the last layer, we will need to calculate a single co-
variance matrix. Tracing back, in the second last layer, we
will need to compute 3 covariance matrices Σ and 3 cross-
correlation matrices E. In the third last layer, we will need
to compute 32 covariance matrices Σ and 1

2 (32+1)32 cross-
correlation matrices E. Then, in the (q+ 1)th last layer, we
will require kq covariance matrices Σ and 1

2 (1 + kq)kq =
Θ(kq) cross-correlation matrices E. In this case, the com-
putational cost increase exponentially, which is infeasible.
in case of a deep neural network. This setup will rapidly in-
crease the field of view of the network, and one would need
special types of convolution, e.g., dilated convolutions, to
address the problem [3].

A.2. A 1-D Convolution With Overlap: Polynomial
But Higher Than Standard 2-D Convolution

The setup above did not consider the overlap between
pixels as the shared kernel moves within the same layer. If
we consider a setting with overlap as in a standard CNN, as
shown in Table. e, similarly, in the last layer, we will need
to compute a single covariance matrix. In the second last
layer, we will need to compute 3 covariance matrices Σ and
3 cross-correlation matrices E. In the third last layer, we
will need to compute (3− 1)× 2 + 1 covariance matrices Σ
and 1

2 ((3−1)×2+1+1)((3−1)×2+1) cross-correlation

matrices E. Then, in the (q + 1)th last layer, it will require
(k − 1)q + 1 covariance matrices Σ and 1

2 ((k − 1)q + 1 +
1)((k − 1)q + 1) = Θ(k2q2) cross-correlation matrices E.

This may appear feasible since the computational cost
is polynomial. But this setup indeed increases the com-
putational cost of a 1-D convolution network Θ(k2q2) to
be higher than a 2-D convolution network, Θ(k2q) since
q < q2. When this strategy is applied to the 2-D image
case, the computational cost (Θ(k4q2)) will be more than
the 4-D tensor convolution network (Θ(k4q)), which is not
feasible. As shown in the literature, training CNNs effi-
ciently on very high resolution 3-D images (or videos) is
still an active topic of ongoing research.

A.3. Memory Cost

The GPU memory footprint also turns out to be high. For
a direct impression of the numbers, we take the ImageNet
with PreActResnet-18 as an example, shown in Table. a.
The memory cost for a naive method is too high, even for
large clusters, if we want to track all cross-correlation terms
between any two pixels and the channels.

B. Tracking Distributions Through Layers

In the main paper, we briefly described the different lay-
ers used in our model. Here, we will provide more details
about the layers.

We consider the ith pixel, after perturbation, to be drawn
from a Gaussian distribution xi ∼ N (µi,Σ), where µi ∈
RN and Σ is the covariance matrix across the N channels
(note that Σ is same for a layer across all pixels). In the
following sections, we will remove the indices to simplify
the formulation.

Several commonly-used basic blocks such as convolu-
tion and fully connected layers are used to setup our net-
work architecture. In order to propagate the distribution
through the entire network, we need a way to propagate the
moments through these layers.



Table a: The memory cost of ImageNet with PreActResnet-18 for different layers. The brute force method would require to compute all the cross-
correlation between different pixels and channels. The memory cost for the brute force method is too high to afford. Our method, in comparison, only
increase a little from the tradition (non-robust) network.

Layer Traditional network Brute force method Our method
Input (224× 224× 3) 224× 224× 3 = 150528 1

2 (224× 224× 3)2 = 11329339392 (224× 224× 3) + (3× 3) = 150537
1st convolution (112× 112× 64) 112× 112× 64 = 802816 1

2 (112× 112× 64)2 = 644513529856 (112× 112× 64) + (64× 64) = 806912
1st res-block (56× 56× 64) 56× 56× 64 = 200704 1

2 (56× 56× 64)2 = 322256764928 (56× 56× 64) + (64× 64) = 204800
2nd res-block (28× 28× 128) 28× 28× 128 = 100352 1

2 (28× 28× 128)2 = 5035261952 (28× 28× 128) + (128× 128) = 116736
3rd res-block (14× 14× 256) 14× 14× 256 = 50176 1

2 (14× 14× 256)2 = 1258815488 (14× 14× 256) + (256× 256) = 115712
4th res-block (7× 7× 512) 7× 7× 512 = 25088 1

2 (7× 7× 512)2 = 314703872 (7× 7× 512) + (512× 512) = 287232

B.1. Convolution Layer:

Let the pixels {xi} inside a k × k convolution kernel
window be independent. Let x̃ ∈ RNink

2

be the vector
which consists of {xi}, where Nin is the number of input
channels. Let Σ ∈ RNin×Nin be the covariance matrix of
each pixel within the k × k window. Let W be the weight
matrix of the convolution layer, which is of the shapeNin×
k× k×Nout. With a slight abuse of notation, let W be the
reshaped weight matrix of the shapeNink2×Nout. Further,
concatenate Σ from each {xi} inside the k × k window to
get a block diagonal Σ̃ ∈ RNink

2×Nink
2

. Then, we get
the covariance of an output pixel to be Σh ∈ RNout×Nout

defined as
Σh = WT Σ̃W

We need to apply Theorem 2 (from the main paper) to
compute the upper bound of Σh. We get the upper bound
covariance matrix (covariance matrix of independent ran-
dom variable x̂ used in Theorem 2) as

Σ̂h = (1 + rmax)WT Σ̃W

Summary: Given each input pixel, xi ∈ RNin follow-
ing N (µi,Σ) and convolution kernel matrix W , the output
distribution of each pixel is N (µhi

, (1 + rmax)WT Σ̃W ),
where, Σ̃ is the block diagonal covariance matrix as men-
tioned before.

B.2. First Linear Layer:

For the first linear layer, we reshape the input in a vec-
tor by flattening both the channel and spatial dimensions.
Similar to the convolution layer, we concatenate {xi} to be
x̃, whose covariance matrix has a block-diagonal structure.
Thus, the covariance matrix of the output pixel is

Σh = WTΣx̃W

where W is the learnable parameter and Σx̃ is the block-
diagonal covariance matrix of x̃ similar to the convolution
layer.

Special case: From Obs. 1, we only need the largest
two intensities to estimate the pcx . Thus if there is only one
linear layer as the last layer in the entire network (as in most

ResNet like models), this can be further simplified: it needs
computing a 2 × 2 covariance matrix instead of the C × C
covariance matrix.

B.3. Linear Layer:

If the network consists of multiple linear layers, calcu-
lating the moments of the subsequent linear layers is per-
formed differently. Since it contains only 1-D inputs, we
can either treat it spatially or channel-wise. In our setup,
we consider it as along the channels.

Let x ∈ RNi be the input of the ith linear layer, where
i > 1. Assume, x ∼ N

(
µ

(i)
x ,Σ

(i)
x

)
. Given the ith linear

layer with parameter (Wi,bi), with the output given by

h = WT
i x + bi

h ∼ N
(
WT
i µ

(i)
x + bi,W

T
i Σ(i)

x Wi

)
Here, Wi ∈ RNi×Ni+1 and bi ∈ RNi+1 and h ∈ RNi+1 .

B.4. Pooling Layer:

Recall that the input of a max pooling layer is {xi}
where each xi ∈ RNin and the index i varies over the
spatial dimension. Observe that as we identify each xi by
the respective distributionN (µi,Σ), applying max pooling
over xi essentially requires computing the maximum over
{N (µi,Σ)}. Thus, we restrict ourselves to average pool-
ing. To be precise, with a kernel window W of size k × k
with stride k used for average pooling, the output of average
pooling, denoted by

h ∼ N

(
1

k2

∑
xi∈W

µi,
Σ

k2

)

B.5. Normalization Layer:

For the normalization layer, given by h = (x − µ)/σ,
where µ, σ can be computed in different ways [9, 2, 18], we
have

h ∼ N

(
µ

(i)
x − µ
σ

,
Σ

(i)
x

σ2

)
However, as the normalization layers often have large Lips-
chitz constant [1], we remove those layers in this work.



Batch normalization: For the batch normalization, the
mean and variance are computed within each mini-batch
[9].

µ =
1

m

m∑
i=1

xi, σ
2 =

1

m

m∑
i=1

(xi − µ)2

where m is the size of the mini-batch. One thing to notice
that µ, σ ∈ RN when xi ∈ RN , N is the channel size. In
this setting, the way to compute the bounded distribution of
output will need to be modified as following:

h ∼ N

(
µ

(i)
x − µ
σ

,
Σ

(i)
x

σσT

)

where “/” is the element-wise divide. σσT ∈ RN×N . And
µ, σ will be computed dynamically as the new data being
fed into the network.
Act normalization: As the performance for batch normal-
ization being different between training and testing period,
there are several other types of normalization layers. One
of the recent one [11] proposed an act normalization layer
where µ, σ are trainable parameters. These two parameters
are initialed during warm-up period to compute the mean
and variance of the training dataset. After initialization,
these parameters are trained freely.

In this case, the update rule is the same as above. The
only difference is that µ, σ do not depended on the data be-
ing fed into the network.

B.6. Activation Layer:

ReLU: In [4, 13], the authors introduced a way to com-
pute the mean and variance after ReLU. Since ReLU is
an element-wise operation, assume x ∼ N (µ, σ2). After
ReLU activation, the first and second moments of the out-
put are given by:

E(ReLU(x)) =
1

2
µ− 1

2
µ erf(

−µ√
2σ

) +
1√
2π
σ exp(− µ2

2σ2
)

var(ReLU(x)) < var(x)

Here, erf is the Error function. We need to track an up-
per bound of the covariance matrix, so we use ReLU(x) ∼
N (µa,Σa), where,

µa =
1

2
µ− 1

2
µ erf(

−µ√
2σ

) +
1√
2π
σ exp(− µ2

2σ2
),

Σa � Σ

Last layer/prediction: Here, the last layer is the layer be-
fore softmax layer, which represents the “strength” of the
model for the label l. By Obs. 1, we have the estimation of

pcx = pcx = Φ(
µ[cx]− µ[c̃]√

Σ[cx, cx] + Σ[c̃, c̃]− 2Σ[cx, c̃]
)

and
pc̃ = pc̃ = 1− pcx

By Theorem 1, the certified radius is

CR =
σ

2
(Φ−1(pcx)− Φ−1(pc̃))

= σ
µ[c]− µ[c̃]√

Σ[cx, cx] + Σ[c̃, c̃]− 2Σ[cx, c̃]

Other activation functions: Other than ReLU, there is no
closed form to compute the mean after the activation func-
tion. One simplification can be: use the local linear function
to approximate the activation function, as Gowal, et al. did
[7]. The good piece of this approximation is that the output
covariance matrix Σa can be bounded by α2Σ, where α is
the largest slope of the linear function.

Another direction is to apply the Hermite expansion [14]
which will add more parameters but is theoretically sound.

As ReLU is the most well-used activation function as
well as the elegant closed form mean after the activation
function, in this paper, we only focus on the ReLU layer
and hold other activation functions into future work.

C. Training Loss
Now that we have defined the basic modules and the

ways to propagate the distribution through these modules,
we now need to make the entire model trainable. In order
to do that, we need to define an appropriate training loss
which is the purpose of this section. In the spirit of [19], the
training loss contains two parts: the classification loss and
the robustness loss, i.e.,

l(gθ;x, y) = lC(gθ;x, y) + λlCR
(gθ;x, y)

Let the distribution of the output of the last layer be
uθ(x) ∼ N (µ,Σ). We need to output the expectation as
the prediction, i.e., µ = E[uθ(x)]. Similar to the literature,
we use the softmax layer on the expectation to compute the
cross-entropy of the prediction and the true label.

lC(gθ;x, y) = y log(softmax(E[uθ(x)]))

The robustness loss measures the certified radius of each
sample. In our case, we have the radius

CR = σ
µ[c]− µ[c̃]√

Σ[c, c] + Σ[c̃, c̃]− 2Σ[c, c̃]

Thus, we want to maximize the certified radius which is
equivalent to minimize the robustness loss.

lCR
(gθ;x, y = cx)

= max(0,Γ− σ µ[cx]− µ[c̃]√
Σ[cx, cx] + Σ[c̃, c̃]− 2Σ[cx, c̃]

)



where cx is the true label, c̃ is the second highest possible
label. Γ is the offset to control the certified radius to con-
sider.

D. Proof Of The Theorem
Theorem 1. [5] Let fθ : Rd → Y be any determin-
istic or random function, and let ε ∼ N (0, σ2I). Let
gθ be the random smooth classifier defined as gθ(x) =
arg maxc∈Y P(fθ(x + ε) = cx). Suppose cx, c̃ ∈ Y and
pcx , pc̃ ∈ [0, 1] satisfy P(fθ(x + ε) = cx) ≥ pcx ≥ pc̃ ≥
maxc̃6=cx P(fθ(x + ε) = c̃). Then gθ(x + δ) = cx for all
‖δ‖2 < CR, where CR = σ

2 (Φ−1(pcx)− Φ−1(pc̃)).

The symbol Φ denotes the CDF of the standard Nor-
mal distribution, and Φ and Φ−1 are involved because of
smoothing the Gaussian perturbation ε.

Proof. To show that gθ(x + δ) = cx, it follows from the
definition of gθ that we need to show that

P(f(x + δ + ε) = cx) > max
c′ 6=cx

P(f(x + δ + ε) = c′)

We will show P(f(x+ δ+ ε) = cx) > maxc′ 6=cx P(f(x+
δ+ε) = c′) for every class c′ 6= cx. Fix one c′ without loss
of generality.

Define the random variables

X := x + ε = N (x, σ2I)

Y := x + δ + ε = N (x + δ, σ2I)

We know that

P(fθ(X) = cx) ≥ pcx , and pc̃ ≥ P(fθ(X) = c′)

We need to show

P(f(Y ) = cx) > P(f(Y ) = c′)

Define the half-spaces:

A := {z : δT (z − x) ≤ σ||δ||Φ−1(pcx)}

B := {z : δT (z − x) ≥ σ||δ||Φ−1(1− pc̃)}

We have P(X ∈ A) = pcx . Therefore, we know
P(f(X) = cx) ≤ P(X ∈ A). Apple the Neyman-
Pearson for Gaussians with different means Lemma [16]
with h(z) := 1[f(z) = cx] to conclude:

P(f(Y ) = cx ≥ P(Y ∈ A)

Similarly, we have P(X ∈ B) = pc̃, then we know
P(f(X) = c′) ≤ P(X ∈ B). Use the Lemma [16] again
with h(z) := 1[f(z) = c′]:

P(f(Y ) = c′) ≤ P(Y ∈ B)

Then to guarantee P(f(Y ) = cx) > P(f(Y ) = c′), it
suffices to show that P(Y ∈ A) > P(Y ∈ B). Thus, if and
only if

||δ|| < σ

2
(Φ−1(pcx)− Φ−1(pc̃))

E. Proof Of The Observations
Observation 1. Let uθ denote the network without the last
softmax layer, i.e., the full neural network can be written as

fθ(x) = arg max
c∈Y

softmax(uθ(x))

Let C = |Y| and assume

uθ(x) ∼ N (µ,Σ)

where µ ∈ RC and Σ ∈ RC×C . Then the estimation of pcx
is

pcx = Φ(
µ[cx]− µ[c̃]√

Σ[cx, cx] + Σ[c̃, c̃]− 2Σ[cx, c̃]
),

where

cx = arg max
c∈Y

P (uθ(x) = c)

c̃ = arg max
c∈Y,c 6=cx

P (uθ(x) = c)

Proof. Let us call the strength of two labels to be ucx , uc̃.
We have

ucx ∼ N (µ[cx],Σ[cx, cx]), uc̃ ∼ N (µ[c̃],Σ[c̃, c̃]).

The cross-correlations Ecx,c̃ = Σ[cx, c̃]. Thus,

pcx = P(ucx > uc̃) = P(ucx − uc̃ > 0).

Let η = ucx − uc̃ ∈ R, then

η ∼ N (µ[cx]− µ[c̃],Σ[cx, cx] + Σ[c̃, c̃]− 2Ecx,c̃)

Then, to compute pcx ,

pcx = P(ucx > uc̃)

= P(η > 0)

= P
( η − µ[cx] + µ[c̃]√

Σ[cx, cx] + Σ[c̃, c̃]− 2Ecx,c̃
>

−µ[cx] + µ[c̃]√
Σ[cx, cx] + Σ[c̃, c̃]− 2Ecx,c̃

)
= P(η′ >

−µ[cx] + µ[c̃]√
Σ[cx, cx] + Σ[c̃, c̃]− 2Ecx,c̃

)

where η′ =
η − µ[cx] + µ[c̃]√

Σ[cx, cx] + Σ[c̃, c̃]− 2Ecx,c̃
∼ N (0, 1)

= 1− Φ(
−µ[cx] + µ[c̃]√

Σ[cx, cx] + Σ[c̃, c̃]− 2Ecx,c̃
)

= Φ(
µ[cx]− µ[c̃]√

Σ[cx, cx] + Σ[c̃, c̃]− 2Ecx,c̃
),Φ : c.d.f. of N (0, 1)



Observation 2. With the input perturbation ε to be iden-
tical along the spatial dimension and without nonlinear
activation function, for qth hidden convolution layer with
{hi}

Mq

i=1 output pixels, we have Σ
(q)
hi

= Σ
(q)
hj
,∀i, j ∈

{1, · · · ,Mq}.
Proof. Let us prove by induction. In the first layer, there is
no cross-correlation between pixels, while the input pertur-
bation is given to be identical. Thus, identical assumption
is true for the first layer.
Assume in the layer 1 to q, the second moments are all iden-
tical within the layer. We need to prove that for layer q+ 1,
this property also holds. Consider two pixels in layer q+ 1,
h
(q+1)
i and h

(q+1)
j . By definition of convolution, we know

h
(q+1)
i =

∑
Wkh

(q)
k where h

(q)
k is the view field of h(q+1)

i

and W is the shared kernel. So the covariance matrix of
h
(q+1)
i is

Σ
(q+1)
hi

=
∑
k

WT
k Σ

(q)
hk
Wk +

∑
m,n

WT
mE

(q)
m,nWn

By the identical assumption, the first components are the
same for h(q+1)

i and h
(q+1)
j . The only problematic compo-

nent is the second piece which requires computing E(q)
m,n.

For E(q)
m,n, we can compute recursively that

E(q)
m,n = E[(h(q)

m − E[h(q)
m ])T (h(q)

n − E[h(q)
n ])]

= g(q)(Σ(q−1), E
(q−1)
m′,n′ ,W

(q−1))

where g(q)(·) is a determined function. Thus, the only prob-
lematic piece is also E

(q−1)
m′,n′ . If we keep doing until we

reach the first layer, we will have

Σ(q) = f (q) ◦ f (q−1) ◦ ...f (1)(Σ(1))

with f(·) is the function depending on g(·), which is a deter-
mined value across all the pixels. This assumption depends
on the linearity of the network, which will in turn separate
the first and second order moments when passing through
the network.
As a simplification case, we can assume that the pixels in
the same layer are independent, which implies E(q)

m,n to be 0
everywhere. This case is suitable when we apply Theorem
2 in the main paper to each convolution layer.

One thing to notice is the activation function. In our
method, in order to keep the identical assumption, we need
to make the second moments after activation function to be
identical when given the identical input. Also, we will need
to keep an upper bound so that the whole method is theo-
retically sound. Due to the fact that the ReLU will reduce
the variance of the variable, we assign the output covariance
to be the same as the input covariance. Thus, the identical
assumption is kept through all the layers.

F. Other Results Of Our Method
We also performed the proposed method on Cifar-100

[12]. This dataset is more challenging than Cifar-10 as the
number of classes increases from 10 to 100. The results are
shown in Table. b.

Table b: Average test accuracy on pair-flipping with noisy rate 45% over
the last ten epochs of Cifar-100. We show the results of Bootstrap[17], S-
model[6], Decoupling[15], MentorNet[10], Co-teaching[8], Trunc Lq[20],
and Ours.

Method Bootstrap S-model Decoupling MentorNet Co-teaching Trunc Lq Ours
mean 0.321 0.218 0.261 0.316 0.348 0.477 0.346
std 3.0e− 3 8.6e− 3 0.3e− 3 5.1e− 3 0.7e− 3 6.9e− 3 0.6e− 3

G. Strengths And Limitations Of Our Method
The biggest benefit of our method is the training time,

which is also the main focus of the paper. As in the main
paper, we have shown that our methods can be 5× faster on
Cifar-10, etc. dataset, with a comparable ACR as MACER.
In real-world applications, training speed is an important
consideration. Thus, our method is a cheaper substitute of
MACER with a marginal performance compromise.

On the other hand, we also need to discuss that under
which circumstances our method does not perform well.
The first case is when the network is extremely deep, e.g.,
Resnet-101. Due to the nature of upper bound, the estima-
tion of the second moments tends to become looser as the
network grows deeper. Thus, this will lead to a looser es-
timation of the distribution of the last layer and the robust-
ness estimation would be less meaningful. Another minor
weakness is when the input perturbation is large, for exam-
ple σ = 1.0. As shown in the main paper, the ACR drops
from 0.56 to 0.52 on ImageNet when the noise perturbation
increases from σ = 0.5 to σ = 1.0. The main reason re-
lates to the assumption of a Gaussian distribution. As the
perturbation grows larger, the number of channels, by the
central limit theorem, should also be larger to satisfy the
Gaussian distribution. Thus, when the network structure is
fixed, there is an inherent limit on the input perturbation.

We note that to perform a fair comparison, we run Co-
hen’s [5], MACER [19], and our method based on the
PreActResnet-18 for the Table. 3 in the main paper. Since
the network is shallower than the original MACER paper,
the performance numbers reported here are lower. As de-
scribed above, a large perturbation σ = 1.0 leads to small
drop in performance. Thus, almost for all three methods,
the ACR for σ = 1.0 is worse than the one for σ = 0.5
on ImageNet. For Places365 dataset, the results are slightly
better on σ = 1.0 than σ = 0.5.

Also, similar as the main paper, we statistically test the
variance based on MC sampling and our upper bound track-
ing method. The results are shown in Table. c. As one
can see that when the network gets deeper, the upper bound



tends to be looser. But in most case, the upper bound
is around 3 times higher than the sample-based variance,
which is affordable in the real-world application.

Table c: Statistics for different layers of MC sampling and our upper
bound tracking method for deeper network.

Layer number 1 9 17 25 33
MC (1000 samples) 0.595 0.782 2.751 7.692 0.712

Upper bound 0.685 3.231 5.583 22.546 3.960
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Table d: Consider a 1-D convolution network with kernel size k = 3. The blue dots are the nodes as well as the covariance matrices Σ to be computed.
The red arrows are the cross-correlation E between two nodes.

In the last layer,

pcx = pcx = Φ

(
µ[cx]− µ[c̃]√

Σ[cx, cx] + Σ[c̃, c̃]− 2Σ[cx, c̃]

)
,

We need to compute 1 Σ(i)

To compute the Σ(i) above (highlighted in orange box), in
the second last layer
Σ(i) = E(WTX(i−1)TX(i−1)W )

=

3∑
m=1

WT
mΣ(i−1)

m Wm +

3∑
m,n=1,m 6=n

WT
mE

(i−1)
mn Wn

We need to compute 3 Σ(i−1) and 3 E(i−1).

To compute the Σ(i−1) above (highlighted in orange box),
in the third last layer,

Σ(i−1) =

3∑
m=1

WT
mΣ(i−2)

m Wm +

3∑
m,n=1,m 6=n

WT
mE

(i−2)
mn Wn

To compute the E(i−1)
12 above (highlighted in green box)

E
(i−1)
12 = E(x

(i−1)
1

T
x
(i−1)
2 ) = E(WTX

(i−2)
1

T
X

(i−2)
2 W )

=

8∑
m,n=3

W̃TE(i−2)
mn W̃ ′

,

where W̃ , W̃ ′ are the weights depending on the position of
m,n.
We need to compute 32 Σ(i−2) and 1

2 (32 + 1)32 E(i−2).

In the (q + 1)th last layer,
We need to compute kq Σ(i−q) and 1

2 (1 + kq)kq E(i−q).



Table e: Consider a 1-D convolution network with kernel size k = 3 with overlapping. The blue dots are the nodes as well as the covariance matrices Σ
to be computed. The red arrows are the cross-correlation E between two nodes.

In the last layer,

pcx = pcx = Φ

(
µ[cx]− µ[c̃]√

Σ[cx, cx] + Σ[c̃, c̃]− 2Σ[cx, c̃]

)
,

We need to compute 1 Σ(i)

To compute the Σ(i) above (highlighted in orange box), in
the second last layer
Σ(i) = E(WTX(i−1)TX(i−1)W )

=

3∑
m=1

WT
mΣ(i−1)

m Wm +

3∑
m,n=1,m 6=n

WT
mE

(i−1)
mn Wn

We need to compute 3 Σ(i−1) and 3 E(i−1).

To compute the Σ(i−1) above (highlighted in orange box),
in the third last layer,

Σ(i−1) =

3∑
m=1

WT
mΣ(i−2)

m Wm +

3∑
m,n=1,m 6=n

WT
mE

(i−2)
mn Wn

To compute the E(i−1)
12 above (highlighted in green box)

E
(i−1)
12 = E(x

(i−1)
1

T
x
(i−1)
2 ) = E(WTX

(i−2)
1

T
X

(i−2)
2 W )

=

4∑
m,n=1

W̃TE(i−2)
mn W̃ ′

,

where W̃ , W̃ ′ are the weights depending on the position of
m,n.
We need to compute (3−1)×2+1 Σ(i−2) and 1

2 ((3−1)×
2 + 1 + 1)((3− 1)× 2 + 1) E(i−2).

In the (q + 1)th last layer,
We need to compute (k− 1)q+ 1 Σ(i−q) and 1

2 ((k− 1)q+

1 + 1)((k − 1)q + 1) E(i−q).


