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A. Proof of Corollary 2

Corollary 2. Suppose that C1 = C2. Let A2 = βA1 for
some β < 1. Note that in this setting, γ∗1 < γ∗2 . Suppose
that σ2

2 = rσ2
1 for some positive r. Then

γ∗2,AMP < γ∗1,AMP

if and only if

β > exp

(
− ε2

2σ2
1

)
and r >

1

1 +
2σ2

1

ε2 log β

Proof. Since C1 = C2, we have

0 > exp

(
− ε2

2σ2
1

)
− β exp

(
− ε2

2rσ2
1

)
It then follows that

ε2

2rσ2
1

<
ε2

2σ2
1

+ log β (1)

noting that log β < 0, we have r > 1.
Further manipulating (1), we get

1

r
< 1 +

2σ2
1

ε2
log β (2)

Since r > 0, the right side of (2) is positive, which gives
rise to

β > exp

(
− ε2

2σ2
1

)
Continuing with (2), we arrive at

r >
1

1 +
2σ2

1

ε2 log β

This proves the result.
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B. Proof of Theorem 2

Theorem 2. Let N = 1. Then for a sufficiently small inner
learning rate ζ , a minimization update step in AMP training
for batch B is equivalent to a gradient-descent step on the
following loss function with learning rate η:

J̃ERM,B(θ) := JERM,B(θ) + Ω(θ)

where

Ω(θ) :=

{
ζ‖∇θJERM,B(θ)‖22, ‖ζ∇θJERM,B(θ)‖2 ≤ ε
ε‖∇θJERM,B(θ)‖2, ‖ζ∇θJERM,B(θ)‖2 > ε

Proof. At each training step of AMP, we adversarially per-
turb the parameter with a step size of ζ. If the norm of
perturbation is larger than a preset value ε, it will be pro-
jected onto the L2-norm ball. Denoted by θk the model
parameter at the k-th iteration, the perturbed parameter is:

θk,adv=

{
θk+ζ∇θJERM,B(θk), ‖ζ∇θJERM,B(θk)‖2≤ε
θk+ε

∇θJERM,B(θk)
‖∇θJERM,B(θk)‖2 , ‖ζ∇θJERM,B(θk)‖2>ε

Then the parameter is updated according to the gradient
computed by the perturbed parameter with a step size of η:

θk+1 = θk − η∇θJERM,B(θk,adv)

With a sufficient small ζ, we can utilize the first-order
Taylor expansion f(x + δ) ≈ f(x) + δT∇xf(x). In the
former condition (i.e. ‖ζ∇θJERM,B(θ)‖2 ≤ ε), we have:

θk+1 = θk − η∇θJERM,B (θk + ζ∇θJERM,B(θk))

≈ θk − η∇θ
(
JERM,B(θk) + ζ‖∇θJERM,B(θk)‖22

)
In the latter condition (i.e. ‖ζ∇θJERM,B(θ)‖2 > ε), we

have:

θk+1 = θk − η∇θJERM,B

(
θk + ε

∇θJERM,B(θk)

‖∇θJERM,B(θk)‖2

)
≈ θk − η∇θ (JERM,B(θk) + ε‖∇θJERM,B(θk)‖2)

This proves the theorem.

1



−2 −1 0 1 2

θ

0

1

2

3

4

5

6

7

L
LERM

LAMP (ε = 1)

Figure 1: The losses of ERM and AMP with varying θ.

C. Why AMP is not Adversarial Training

In this section, we will further discuss the difference
between AMP and adversarial training (ADV).

It is sensible that perturbing weights θ may have an effect
similar to perturbing the examples x since θ and x usually
appear together via inner product θTx. However we note
that except for some peculiar cases (such as linear network
with some peculiar choices of the loss function or a set of
peculiarly constructed training examples), in general the so-
lution θ∗AMP to the AMP optimization problem is different
from the solution θ∗ADV to the ADV counterpart. The dif-
ference between θ∗AMP and θ∗ADV can be attributed to two
sources.

First, let `(x;θ) denote the ERM loss for a single training
example x. For N examples, the overall ERM loss LERM

is the sum (or average) of `(xi;θ) over all examples xi,
i = 1, . . . , N . In AMP, the perturbation is to maximize the
overall empirical loss LERM and this perturbation is applied
globally to weights θ. However, in ADV, the perturbation is
applied individually to each training example xi, with the
objective of maximizing the individual ERM loss `(xi;θ).

Second, even in the case when there is only one training
example x so that LERM = `, θ∗AMP and θ∗ADV may still be
different. Here is an example. Let

g(z) :=

{
z if z ≥ 0

−2z if z < 0

Consider that there is a single scalar example x = 1
and the weight θ is a scalar. Define `(x; θ) = g(θx). It
can be verified that θ∗ADV = θ∗ERM = 0 regardless of the
perturbation radius ε, but θ∗AMP = ε/3 (see Figure 1, where
the losses are plotted as functions of θ).

D. Definition of Expected Calibration Error

We follow the definition presented in the previous work
[2]. Firstly, the predictions are grouped into M interval bins
of equal sizes. LetBm be the set of indices of samples whose
prediction scores (the winning softmax score) fall into the

FGSM SVHN CIFAR-10 CIFAR-100

ERM 23.41±0.569 36.06±1.908 68.78±0.699
Dropout 22.36±0.591 34.13±0.844 64.70±0.549
Label Smoothing 17.74±1.674 23.24±0.427 57.30±0.410
Flooding 17.40±0.656 36.42±1.303 68.45±0.407
MixUp 19.95±0.637 25.82±0.384 65.90±0.498
Adv. Training 14.33±0.200 18.58±0.304 48.51±0.260
RMP 23.73±0.965 35.40±0.572 68.52±0.515
AMP 16.82±1.561 28.61±0.359 59.04±1.325

PGD SVHN CIFAR-10 CIFAR-100

ERM 45.17±1.085 58.88±2.296 85.46±0.770
Dropout 41.76±1.346 55.21±1.088 78.46±1.081
Label Smoothing 32.55±2.005 34.93±0.443 65.31±0.700
Flooding 33.50±1.707 60.32±1.393 84.66±0.285
MixUp 75.75±2.129 62.77±1.018 89.58±0.596
Adv. Training 20.20±0.409 21.46±0.373 51.72±0.327
RMP 44.74±0.960 58.06±0.650 84.80±0.488
AMP 25.15±1.942 49.72±0.785 73.95±2.608

Table 1: Test errors (%) against the while-box FGSM and
PGD adversarial attacks. Each experiment has been run ten
times to report the mean and standard derivation of errors.

interval Im = (m−1M , mM ]. The accuracy and confidence of
Bm are defined as:

acc(Bm) =
1

|Bm|
∑
i∈Bm

1(ŷi = yi)

conf(Bm) =
1

|Bm|
∑
i∈Bm

p̂i

where ŷi and yi are the predicted label and true class la-
bels for sample i, p̂i is the confidence (the winning softmax
score) of sample i. The Expected Calibration Error (ECE) is
defined as the difference in expectation between confidence
and accuracy, i.e.:

ECE =

M∑
m=1

|Bm|
n

∣∣∣∣acc(Bm)− conf(Bm)

∣∣∣∣
where n is the number of samples.

E. Influence of Perturbation

We plot the empirical risks of the pretrained PreActRes-
Net18 models on three image datasets with varying pertur-
bation radius in Figure 2. To clearly illustrate this, we adopt
η = 2 and N = 2. In these experiments, the perturbation
radius ε meets the sweet spots around 0.06 on all the three
datasets, where LERM(θ∗AMP) gets the minimum value.

F. Robustness to Adversarial Attacks

The previous work [5] suggests that the flat minima make
the adversarial attacks take more efforts for the input to leave
the minima, so AMP is expected to improve the model’s
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Figure 2: The comparison of LERM of the models trained with ERM (red) and AMP (blue) with varying perturbation radius.

adversarial robustness. To validate this, we use the models
trained with different regularization schemes to evaluate
their adversarial robustness against the Fast Gradient Sign
Method (FGSM) [1] and Projected Gradient Decent (PGD)
[4] attacks. For FGSM, we set the perturbation radius to 4 per
pixel. For PGD, we set the step size to 1 and perform 10 steps
to generate adversarial examples, the perturbation radius is
the same as FGSM. PreActResNet18 is chosen as the model
architecture. We report the top-1 classification error on the
adversarial examples constructed from the test set in Table 1.
From the results, adversarial training outperforms all other
schemes, since it directly trains models on the adversarial
examples. AMP and label smoothing also show an effect in
improving the model’s robustness against both single-step
FGSM attack and multi-step PGD attack.

G. Loss Curve

To investigate the mechanism of different regularization
schemes in the training course, we plot the evolution curves
of the training loss and the test loss in Figure 3 using PreAc-
tResNet18. We select ERM and two representative analogues
(Flooding and MixUp) which achieved the second-best per-
formance in the previous experiment to compare with AMP.
From Figure 3, ERM obtains the smallest training loss, and
MixUp retains a high training loss since it trains models on
augmented examples. AMP injects a small perturbation into
the model parameter, and hence the training loss is slightly
increased. It appears that the Flooding scheme affects train-

ing only when the training loss drops to a very low value,
whereas MixUp and AMP take effects much earlier. For the
test loss, AMP converges at a similar speed as other schemes,
and reduces the test loss to a smaller value at the final stage.

H. Flatness of Selected Minima

We visualize the landscapes around the minima of the
empirical risk selected by ERM or AMP, the 2D views are
plotted in Figure 4 and the 3D views are in Figure 5. Specifi-
cally, we compute the empirical risks of the PreActResNet18
models whose parameter is perturbed along two random di-
rections dx,dj with different step sizes δx, δy, where the
direction vectors are normalized by the norm of filters sug-
gested by [3]. Specifically, we visualize the landscapes by
computing

LERM(θ∗ + δxdx + δydy)

The results suggest that AMP indeed selects flatter min-
ima via adversarial perturbations.

I. Computing Environment and Resources

Our PyTorch code is executed in a CUDA environment.
When evaluated on a single Tesla V100 GPU, the code takes
around 2.4 hours to train a PreActResNet18 model with
ERM on the CIFAR-10 dataset, and around 4.2 hours with
AMP. The computation time mainly depends on the number
of inner iterations, the number of epochs, and the number of
GPUs. The code and datasets for reproduction can be found
at https://github.com/hiyouga/AMP-Regularizer.
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Figure 3: Loss curves for PreActResNet18 with different regularization schemes on three benchmark image datasets.
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Figure 4: 2D visualization of the minima of the empirical risk selected by ERM and AMP on three benchmark image datasets.
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Figure 5: 3D visualization of the minima of the empirical risk selected by ERM and AMP on the SVHN dataset.
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