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This file provides (i) experiments of fitting e on real data
(footnote 2) (ii) results on a testing data with glass color
variation (footnote 5), (iii) more visual quality comparison
results (footnote 11), and (iv) comparison results with the
single-step method (footnote 12).

7. Fitting e Using Data from SIR2 [8]
We take data in SIR2 to examine our image formation

model that considers the absorption effect. We fit e based
on a small patch Ip instead of the whole image I to reduce
the impact of reflection (Figure 7 left). To be specific, if the
patch is with (ΦR)p ≈ 0 (Φ is provided by SIR2), e can be
approximated by avg(Ip�Tp) according to Equation (5), as
O tends to be an all-one matrix. It is noted that the absolute
value of e fitted by LDR images in SIR2 is not accurate due
to the non-linear camera pipeline. To this end, our analysis
is based on the relative values of e fitted from a pair of I that
has a similar transmission (SSIM>0.95) but different glass
thickness. We then locate the patch for a pair of images such
that (ΦR)p ≈ 0 (more than 500 elements for a 50×50 patch
in both samples) to estimate e. Finally, we find 30 eligible
pairs from SIR2 for analysis (Figure 7 right top). We also
randomly synthesize 300 pairs of data with different glass
thickness (Figure 7 right bottom) for reference which are
less affected by camera pipeline. Figure 7 shows that most
I with the thin glass (less absorption) has larger e, which is
consistent with our modeling of absorption effect.

8. Testing on Data with Different Glass Colors
We have validated the effectiveness of our methods to

consider the absorption effect in aspects of glass thickness
and orientation on real data (Table 1 in the main paper). In
this section, we further investigate the performance on data
with various absorption effects caused by the color of glass.
Data synthesizing. Since there is no existing real dataset
with the color variation of glass, we use a synthetic dataset
BLD-COLOR for evaluation. BLD-COLOR is rendered
based on a physically-based rendering engine Cycles [10]
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Figure 7. Left: T and ΦR of a pair of data (thickness: 3 mm and 5
mm); Red boxes indicate patch location; Heat maps visualize fitted
e on the patch (for each pixel). Right top: Fitted e for 30 pairs of
real data from SIR2; The arrow indicates data in left figure. Right
bottom: Fitted e for 300 pairs of synthetic data (by Equation (5)).

and a free open-source 3D computer graphics software
Blendera. We synthesize 90 reflection-contaminated im-
ages using three demo scenarios (two indoor, one outdoor)b.
Specifically, a glass is inserted into these scenarios and 15
scenes are rendered by placing the glass and camera at dif-
ferent positions (5 for each of these three scenarios). These
positions are randomly selected. For each scene, we change
the color of the glass by setting its V channel (with HSV
color model, denoted as Vc) to 1.0, 0.98, 0.96, 0.94, 0.92,
0.90 and generate 6 reflection-contaminated images accord-
ingly. Figure 8 shows the rendered reflection-contaminated
images as well as their transmission images of three scenes
from three scenarios. We use the same evaluation strategy
as that in our main paper to compare performance on this
synthetic dataset.
Overall performance. Table 3 displays quantitative re-
sults. As can be observed, our method and our one-branch
method achieve the best and the second-best results in terms
of SSIM, IS, and PSNR. Such results validate the effective-
ness of our method that considers absorption effect to solve
the problem of single image reflection removal.

ahttps://www.blender.org/
bTagged by AGENT 327 BARBERSHOP, CLASS ROOM, and

BARCELONA PAVILLION. Available from https://www.blender.
org/download/demo-files/#cycles
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Input (𝑉𝑐 = 1.0) Input (𝑉𝑐 = 0.98) Input (𝑉𝑐 = 0.90)Input (𝑉𝑐 = 0.96) Input (𝑉𝑐 = 0.94) Input (𝑉𝑐 = 0.92) Transmission image

Figure 8. An illustration of BLD-COLOR dataset. From top to bottom: a synthetic scene indicating the color of glass for each column,
three scenes from AGENT 327 BARBERSHOP, CLASS ROOM, and BARCELONA PAVILLION, respectively. From left to right: reflection-
contaminated images with different colors of glass (Vc = 1.0, 0.98, 0.96, 0.94, 0.92, 0.90, respectively) and a transmission image.

Table 3. Comparisons of quantitative results in terms of SSIM, IS, and PSNR on BLD-COLOR. We mark the best and second-best performing
methods in red and blue respectively.

Dataset(size) Metric Ours One-branch w/o-Con ZN18[1] YM19[2] WS19[3] WT19[4] WY19[5] KH20[6] LY20[7]

BLD-
COLOR

SSIM 0.8067 0.8004 0.7991 0.7934 0.7825 0.7369 0.7739 0.7483 0.7646 0.7772
IS 0.9253 0.9222 0.9189 0.9160 0.9118 0.8511 0.9196 0.9191 0.9159 0.9169
PSNR 23.63 23.60 23.27 22.24 23.52 19.28 22.66 22.38 22.89 22.19

Table 4. Comparisons of quantitative results in terms of SSIM, IS, and PSNR for our method and one-step method. We bold the better
numbers.

Datasets SSIM IS PSNR

Two-step One-step Two-step One-step Two-step One-step

SIR2-THICK [8] 0.8965 0.8741 0.9773 0.9612 24.05 22.89
ZC20-ORIEN [9] 0.8790 0.8511 0.9722 0.9521 23.93 19.24
LY20-DATA [7] 0.8732 0.8611 0.9552 0.9477 23.97 22.44

SIR2 [8] 0.9003 0.8843 0.9756 0.9671 24.34 23.01
ZN18-DATA [1] 0.7783 0.7615 0.8970 0.8910 19.63 18.87

BLD-COLOR 0.8067 0.7977 0.9222 0.9169 23.63 23.38

9. Visual Quality Comparison Results

Figure 9-Figure 14 show more visual quality results, com-
paring with methods of one-branch, w/o-Con, YM19 [2],
ZN18 [1], WS19 [3], WT19 [4], WY19 [5], KH20 [6], and
LY20 [7], on datasets of SIR2-THICK [8], ZC20-ORIEN [9],
LY20-DATA [7], SIR2 [8], ZN18-DATA [1], and BLD-
COLOR. For each result (or input), we calculate the IS index
map between it and the ground truth of transmission image
and put the IS index map at bottom of each image. All heat
maps take the same number-color correspondence as that in
Figure 5 in the main paper. The better results of reflection
removal and the IS index maps demonstrate that our method
not only recovers more accurate overall intensity of trans-
mission images but also better suppresses reflection artifacts
for reflection removal.

10. Comparing with One-Step Method
To validate the effectiveness of our two-step method, we

compare it with a one-step method. This one-step method is
developed with only network h and takes I as the input, as
compared with our two-step method in Figure 2 in our main
paper. We use the same training data and the same training
setting as those for our two-step method to train the one-step
method.

The quantitative performance comparison is displayed in
Table 4. As can be observed, our two-step method shows a
significant performance advantage over the one-step method.
The superior performance of our method for testing datasets
validates the effectiveness of our two-step method that con-
siders the absorption effect in the first step.
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Input (I) Ground truth Ours One-branch w/o-Con YM19 ZN18 WS19 WT19 WY19 KH20 LY20

Figure 9. Visual quality comparison for data from SIR2-THICK [8]. Color boxes highlight noticeable differences. Zoom in for better details.

Input (I) Ground truth Ours One-branch w/o-Con YM19 ZN18 WS19 WT19 WY19 KH20 LY20

Figure 10. Visual quality comparison for data from ZC20-ORIEN [9]. Color boxes highlight noticeable differences. Zoom in for better
details.
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Input (I) Ground truth Ours One-branch w/o-Con YM19 ZN18 WS19 WT19 WY19 KH20 LY20

Figure 11. Visual quality comparison for data from LY20-DATA [7]. Color boxes highlight noticeable differences. Zoom in for better details.

Input (I) Ground truth Ours One-branch w/o-Con YM19 ZN18 WS19 WT19 WY19 KH20 LY20

Figure 12. Visual quality comparison for data from SIR2 [8]. Color boxes highlight noticeable differences. Zoom in for better details.
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Input (I) Ground truth Ours One-branch w/o-Con YM19 ZN18 WS19 WT19 WY19 KH20 LY20

Figure 13. Visual quality comparison for data from ZN18-DATA [1]. Color boxes highlight noticeable differences. Zoom in for better details.

Input (I) Ground truth Ours One-branch w/o-Con YM19 ZN18 WS19 WT19 WY19 KH20 LY20

Figure 14. Visual quality comparison for data from BLD-COLOR. Color boxes highlight noticeable differences. Zoom in for better details.
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