
Improving Calibration for Long-Tailed Recognition (Supplementary Material)
A. Experiment Setup

Following Liu et al. [20] and Kang et al. [15], we report the commonly used top-1 accuracy over all classes on the balanced
test/validation datasets, denoted as All. We further report accuracy on three splits of classes: Head-Many (more than 100
images), Medium (20 to 100 images), and Tail-Few (less than 20 images). The detailed setting of hyperparameters and training
for all datasets used in our paper are listed in Table 6.

Dataset
Common setting Stage-1 Stage-2

LR BS WD Epochs LRS Epochs LRS ε1 εK ∆W

CIFAR-10-LT β = 10 0.1 128 2× 10−4 200 multistep 10 cosine 0.1 0.0 0.2×
CIFAR-10-LT β = 50 0.1 128 2× 10−4 200 multistep 10 cosine 0.2 0.0 0.2×
CIFAR-10-LT β = 100 0.1 128 2× 10−4 200 multistep 10 cosine 0.3 0.0 0.5×

CIFAR-100-LT β = 10 0.1 128 2× 10−4 200 multistep 10 cosine 0.2 0.0 0.1×
CIFAR-100-LT β = 50 0.1 128 2× 10−4 200 multistep 10 cosine 0.3 0.0 0.1×
CIFAR-100-LT β = 100 0.1 128 2× 10−4 200 multistep 10 cosine 0.4 0.1 0.2×

ImageNet-LT 0.1 256 5× 10−4 180 cosine 10 cosine 0.3 0.0 0.05×
Places-LT 0.1 256 5× 10−4 90 cosine 10 cosine 0.4 0.1 0.05×
iNaturalist 2018 0.1 256 1× 10−4 200 cosine 30 cosine 0.4 0.0 0.05×

Table 6: Detailed experiment setting on five benchmark datasets. LR: initial learning rate, BS: batch size, WD: weight decay,
LRS: learning rate schedule, and ∆W : learning rate ratio of ∆W .

B. Exponential Form of the Related Function f(·)
As discussed in Secs. 3.2 and 4.2, the form of the related function f(·) may play an important role for final model

performance. We draw the illustration of Eqs. (3.a), (3.b), and (3.c) at the left of Fig. 8. For the CIFAR-100-LT dataset with
imbalanced factor 100, K = 100, N1 = 500, and N100 = 5. Based on the ablation study results of ε1 and εK mentioned in
Sec. 4.2, we set ε1 = 0.4 and ε100 = 0.1 here. After fintuning for 10 epochs in Stage-2, the accuracy of the concave model is
the best. We also design an exponential related function, which is written as

εy = f(Ny) = εK + (ε1 − εK)

(
Ny −NK
N1 −NK

)p
, y = 1, 2, ...,K, (7)

where p is a hyperparameter to control the shape of the related function. For example, we get the concave related function
when setting p < 1 and convex function otherwise. Illustration of Eq. (7) is given on the right of Fig. 8. Comparing accuracy
of all variants, the influence of the related function form is quite limited for the final performance (0.3% increase). Because the
concave related function Eq. (3.a) achieves the best performance, we choose it as the default setting of the related function f(·)
for other experiments.
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Figure 8: Function illustration and accuracy of Eqs. (3.a), (3.b), and (3.c) (left) and Eq. (7) (right).



C. Calibration Performance
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Figure 9: Reliability diagrams on CIFAR10 with 15 bins. From left to right: plain ResNet-32 model trained on the original
CIFAR-10 dataset, plain model, cRT, LWS, and MiSLAS trained on long-tailed CIFAR-10 with imbalanced factor 100.
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Figure 10: Reliability diagrams on ImageNet with 15 bins. From left to right: plain ResNet-50 model trained on the original
ImageNet dataset, plain model, cRT, LWS, and MiSLAS trained on ImageNet-LT.
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Figure 11: Reliability diagrams of ResNet-152 trained on Places-LT with 15 bins. From left to right: cRT, LWS, cRT with
mixup, LWS with mixup, and MiSLAS.
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Figure 12: Reliability diagrams of ResNet-50 trained on iNaturalist 2018 with 15 bins. From left to right: cRT, LWS
(under-confidence), cRT with mixup, LWS with mixup (under-confidence), and MiSLAS (under-confidence).



D. More Results on ImageNet-LT, iNaturalist 2018, and Places-LT

Backbone Method Many Medium Few All

ResNet-50

cRT 62.5 47.4 29.5 50.3
LWS 61.8 48.6 33.5 51.2
cRT+mixup 63.9 49.1 30.2 51.7
LWS+mixup 62.9 49.8 31.6 52.0
MiSLAS 61.7 51.3 35.8 52.7

ResNet-101

cRT 63.8 48.5 30.0 51.4
LWS 63.1 49.9 33.8 52.3
cRT+mixup 65.2 50.6 31.6 53.1
LWS+mixup 64.5 51.2 34.1 53.5
MiSLAS 64.3 52.1 35.8 54.1

ResNet-152

cRT 64.9 50.4 30.6 52.7
LWS 64.1 51.8 35.5 53.8
cRT+mixup 66.5 51.6 32.8 54.2
LWS+mixup 66.1 52.2 34.5 54.6
MiSLAS 65.4 53.2 37.1 55.2

Table 7: Comprehensive accuracy results on ImageNet-LT with different backbone networks (ResNet-50, ResNet-101 &
ResNet-152) and training 180 epochs.

Backbone Method Many Medium Few All

ResNet-50

cRT 73.2 68.8 66.1 68.2
τ -normalized 71.1 68.9 69.3 69.3
LWS 71.0 69.8 68.8 69.5

cRT+mixup 74.2 71.1 68.2 70.2
LWS+mixup 72.8 71.6 69.8 70.9
MiSLAS 73.2 72.4 70.4 71.6

Table 8: Comprehensive accuracy results on iNaturalist 2018 with ResNet-50 and training 200 epochs.

Backbone Method Many Medium Few All

ResNet-152

Lifted Loss 41.1 35.4 24.0 35.2
Focal Loss 41.1 34.8 22.4 34.6
Range Loss 41.1 35.4 23.2 35.1
FSLwF 43.9 29.9 29.5 34.9
OLTR 44.7 37.0 25.3 35.9

OLTR+LFME 39.3 39.6 24.2 36.2
cRT 42.0 37.6 24.9 36.7
τ -normalized 37.8 40.7 31.8 37.9
LWS 40.6 39.1 28.6 37.6

cRT+mixup 44.1 38.5 27.1 38.1
LWS+mixup 41.7 41.3 33.1 39.7
MiSLAS 39.6 43.3 36.1 40.4

Table 9: Detailed accuracy results on Places-LT, starting from an ImageNet pre-trained ResNet-152.



E. Proof of Eq. (2), the Optimal Solution of LAS
In this section, we prove the optimal solutions of cross-entropy, the re-weighting method, and LAS. Furthermore, the

comparison among above three methods will also be discussed.
The general loss function form of these three methods for K classes can be written as

l = −
K∑
i=1

qi log pi, pi = softmax(w>i x), s.t.,

K∑
i

pi = 1, (8)

where p, w, and x are the predicted probability, the weight parameter of the last fully-connected layer, and the input of the last
fully-connected layer, respectively. When the target label q is defined as

qi =

{
1, i = y,
0, i 6= y,

where y is the original ground truth label. Eq. (8) becomes the commonly used cross-entropy loss function. Similarly, when
the target label q is defined as

qi =

{
wi, i = y, and wi > 0,
0, i 6= y,

Eq. (8) becomes the re-weighting loss function. Moreover, when the target label q is

qi =

{
1− εy = 1− f(Ny), i = y,
εy
K−1 =

f(Ny)
K−1 , i 6= y,

(9)

Eq. (8) becomes the proposed LAS method. To get the optimal solution of Eq. (8), we define its Lagrange multiplier form as

L = l + λ

(
K∑
i

pi − 1

)
= −

K∑
i=1

qi log pi + λ

(
K∑
i

pi − 1

)
, (10)

where λ is the Lagrange multiplier. The first order conditions of Eq. (10) w.r.t. λ and p can be written as

∂L

∂λ
=

K∑
i=1

pi − 1 = 0,

∂L

∂pi
= −qi

pi
+ λ = 0.

(11)

According to Eq. (11), we get pi = qi∑K
j=1 qj

. Then, in the case of cross-entropy and re-weighting loss function, we get

pi = 1, i = y and pi = 0, i 6= y. Noting that

pi = softmax(w>i x) =
exp(w>i x)∑K
j=1 exp(w>j x)

,

the optimal solutions of w>i x for both cross-entropy and re-weighting loss functions are the same, that is, w∗i
>x = inf .

This means that both cross-entropy and re-weighting loss functions make the weight vector of the right class wi, i = y large
enough while the others wj , j 6= y sufficiently small. As a result, they cannot change the predicted distribution and relieve
over-confidence effectively. In contrast, in our LAS, according to Eqs. (9) and (11), we get

pi =
exp(w>i x)∑K
j=1 exp(w>j x)

=
qi∑K
j=1 qj

=

{
1− εy, i = y,
εy
K−1 , i 6= y,

=⇒ w∗i
>x =

{
log
[
(K−1)(1−εy)

εy

]
+ c, i = y,

c, i 6= y,
(12)

where c ∈ R can be an arbitrary real number. Overall, comparing with the infinite optimal solution in cross-entropy and
re-weighting method, LAS encourages a finite output, which leads to a more general result, properly refines the predicted
distributions of the head, medium, and tailed classes, and remedies over-confidence effectively.



F. More Results about the Effect of mixup on cRT and LWS

Figure 13: Classifier weight norms for the Places-LT evaluation set (365 classes in total) when classes are sorted by descending
values of Nj , where Nj denotes the number of training sample for Class-j. Left: weight norms of cRT with/without mixup.
Right: weight norms of LWS with/without mixup. Light shade: true norm. Dark lines: smooth version. Best viewed on screen.

Figure 14: Classifier weight norms for the iNaturalist 2018 validation set (8,142 classes in total) when classes are sorted by
descending values of Nj , where Nj denotes the number of training sample for Class-j. Left: weight norms of cRT with or
without mixup. Right: weight norms of LWS with or without mixup. Light shade: true norm. Dark lines: smooth version. Best
viewed on screen.

As mentioned in Sec. 3.1 and Fig. 2, we observe that when applying mixup (orange line), the weight norms of the tail
classes tend to be larger and the weight norms of the head classes are decreased, which means mixup may be more friendly to
the tail classes. Here, we show more evidences that mixup reduces dominance of the head classes. In Figs. 13 and 14, norm of
these variants are trained on Places-LT and iNaturalist 2018, respectively. The results are similar and consistent with those
trained on ImageNet-LT.


