Improving Calibration for Long-Tailed Recognition (Supplementary Material)

A. Experiment Setup

Following Liu et al. [20] and Kang et al. [15], we report the commonly used top-1 accuracy over all classes on the balanced
test/validation datasets, denoted as All. We further report accuracy on three splits of classes: Head-Many (more than 100
images), Medium (20 to 100 images), and Tail-Few (less than 20 images). The detailed setting of hyperparameters and training
for all datasets used in our paper are listed in Table 6.

‘ Common setting ‘ Stage-1 ‘ Stage-2
| LR BS WD | Epochs ~ LRS | Epochs LRS ¢ ex AW

CIFAR-10-LT =10 | 0.1 128 2x107* 200 multistep 10 cosine 0.1 0.0 0.2x
CIFAR-10-LT =50 |01 128 2x107* 200 multistep 10 cosine 0.2 0.0 0.2x
CIFAR-10-LT B=100| 0.1 128 2x107* 200 multistep 10 cosine 03 0.0 0.5x

CIFAR-100-LT =10 0.1 128 2x107% 200 multistep 10 cosine 0.2 0.0 0.1x
CIFAR-100-LT 3=50 |01 128 2x107* 200 multistep 10 cosine 03 0.0 0.1x
CIFAR-100-LT 3=100 | 0.1 128 2x 107 200 multistep 10 cosine 04 0.1 0.2x

Dataset

ImageNet-LT 0.1 256 5x1074 180 cosine 10 cosine 0.3 0.0 0.05x
Places-LT 0.1 256 5x10~* 90 cosine 10 cosine 04 0.1 0.05x%
iNaturalist 2018 0.1 256 1x10* 200 cosine 30 cosine 04 0.0 0.05x

Table 6: Detailed experiment setting on five benchmark datasets. LR: initial learning rate, BS: batch size, WD: weight decay,
LRS: learning rate schedule, and AW learning rate ratio of AW.

B. Exponential Form of the Related Function f(-)

As discussed in Secs. 3.2 and 4.2, the form of the related function f(-) may play an important role for final model
performance. We draw the illustration of Egs. (3.a), (3.b), and (3.c) at the left of Fig. 8. For the CIFAR-100-LT dataset with
imbalanced factor 100, K = 100, N; = 500, and Nyg9 = 5. Based on the ablation study results of €; and e mentioned in
Sec. 4.2, we set e = 0.4 and €199 = 0.1 here. After fintuning for 10 epochs in Stage-2, the accuracy of the concave model is
the best. We also design an exponential related function, which is written as

p
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where p is a hyperparameter to control the shape of the related function. For example, we get the concave related function
when setting p < 1 and convex function otherwise. Illustration of Eq. (7) is given on the right of Fig. 8. Comparing accuracy
of all variants, the influence of the related function form is quite limited for the final performance (0.3% increase). Because the
concave related function Eq. (3.a) achieves the best performance, we choose it as the default setting of the related function f(-)
for other experiments.
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Figure 8: Function illustration and accuracy of Egs. (3.a), (3.b), and (3.c) (left) and Eq. (7) (right).



C. Calibration Performance
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Figure 9: Reliability diagrams on CIFAR10 with 15 bins. From left to right: plain ResNet-32 model trained on the original
CIFAR-10 dataset, plain model, cRT, LWS, and MiSLAS trained on long-tailed CIFAR-10 with imbalanced factor 100.
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Figure 10: Reliability diagrams on ImageNet with 15 bins. From left to right: plain ResNet-50 model trained on the original
ImageNet dataset, plain model, cRT, LWS, and MiSLAS trained on ImageNet-LT.
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Figure 11: Reliability diagrams of ResNet-152 trained on Places-LT with 15 bins. From left to right: cRT, LWS, cRT with
mixup, LWS with mixup, and MiSLAS.
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Figure 12: Reliability diagrams of ResNet-50 trained on iNaturalist 2018 with 15 bins. From left to right: cRT, LWS
(under-confidence), cRT with mixup, LWS with mixup (under-confidence), and MiSLAS (under-confidence).
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D. More Results on ImageNet-LT, iNaturalist 2018, and Places-LT

Backbone | Method | Many Medium Few All
cRT 62.5 47.4 29.5 50.3
LWS 61.8 48.6 335 51.2
ResNet-50 cRT+mixup 63.9 49.1 30.2 51.7
LWS+mixup 62.9 49.8 31.6 52.0
MiSLAS 61.7 51.3 35.8 52.7
cRT 63.8 48.5 30.0 514
LWS 63.1 49.9 33.8 52.3
ResNet-101 cRT+mixup 65.2 50.6 31.6 53.1
LWS+mixup 64.5 51.2 34.1 53.5
MiSLAS 64.3 52.1 35.8 54.1
cRT 64.9 50.4 30.6 52.7
LWS 64.1 51.8 35.5 53.8
ResNet-152 cRT+mixup 66.5 51.6 32.8 54.2
LWS+mixup 66.1 52.2 34.5 54.6
MiSLAS 65.4 53.2 371 55.2

Table 7: Comprehensive accuracy results on ImageNet-LT with different backbone networks (ResNet-50, ResNet-101 &
ResNet-152) and training 180 epochs.

Backbone Method Many Medium Few All
cRT 73.2 68.8 66.1 68.2
T-normalized 71.1 68.9 69.3 69.3
LWS 71.0 69.8 68.8 69.5

ResNet-50
cRT+mixup 74.2 71.1 68.2 70.2
LWS+mixup 72.8 71.6 69.8 70.9
MiSLAS 73.2 72.4 70.4 71.6

Table 8: Comprehensive accuracy results on iNaturalist 2018 with ResNet-50 and training 200 epochs.

Backbone Method Many Medium Few All
Lifted Loss 41.1 354 24.0 35.2
Focal Loss 41.1 34.8 22.4 34.6
Range Loss 41.1 35.4 23.2 35.1
FSLwF 43.9 29.9 29.5 349
OLTR 44.7 37.0 25.3 359
ResNet.152 OLTR+LFME 39.3 39.6 24.2 36.2
esNet- cRT 42.0 37.6 24.9 36.7
T-normalized 37.8 40.7 31.8 37.9
LWS 40.6 39.1 28.6 37.6
cRT+mixup 44.1 38.5 27.1 38.1
LWS+mixup 41.7 41.3 33.1 39.7
MiSLAS 39.6 43.3 36.1 40.4

Table 9: Detailed accuracy results on Places-LT, starting from an ImageNet pre-trained ResNet-152.



E. Proof of Eq. (2), the Optimal Solution of LAS

In this section, we prove the optimal solutions of cross-entropy, the re-weighting method, and LAS. Furthermore, the
comparison among above three methods will also be discussed.
The general loss function form of these three methods for K classes can be written as

K K
l=- Z q; log p;, p; = softmax(w, x), s.t., Zpi =1, (8)
i=1 i

where p, w, and x are the predicted probability, the weight parameter of the last fully-connected layer, and the input of the last
fully-connected layer, respectively. When the target label q is defined as

_J L i=y
%= { 0, i#v,
where y is the original ground truth label. Eq. (8) becomes the commonly used cross-entropy loss function. Similarly, when
the target label q is defined as

0, 1#y,

Eq. (8) becomes the re-weighting loss function. Moreover, when the target label q is
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Eq. (8) becomes the proposed LAS method. To get the optimal solution of Eq. (8), we define its Lagrange multiplier form as
K K K
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where ) is the Lagrange multiplier. The first order conditions of Eq. (10) w.r.t. A and p can be written as
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According to Eq. (11), we get p; = Then, in the case of cross-entropy and re-weighting loss function, we get
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p; =1,i =y and p, = 0,7 # y. Noting that
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the optimal solutions of w;'— a for both cross-entropy and re-weighting loss functions are the same, that is, w;fT o = inf.

This means that both cross-entropy and re-weighting loss functions make the weight vector of the right class w;, ¢ = y large
enough while the others w;, j # y sufficiently small. As a result, they cannot change the predicted distribution and relieve
over-confidence effectively. In contrast, in our LAS, according to Egs. (9) and (11), we get
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where ¢ € R can be an arbitrary real number. Overall, comparing with the infinite optimal solution in cross-entropy and
re-weighting method, LAS encourages a finite output, which leads to a more general result, properly refines the predicted
distributions of the head, medium, and tailed classes, and remedies over-confidence effectively.

exp(w;' x

K
> j—1 exp(w

Di =




F. More Results about the Effect of mixup on cRT and LWS
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Figure 13: Classifier weight norms for the Places-LT evaluation set (365 classes in total) when classes are sorted by descending
values of N;, where N; denotes the number of training sample for Class-j. Left: weight norms of cRT with/without mixup.
Right: weight norms of LWS with/without mixup. Light shade: true norm. Dark lines: smooth version. Best viewed on screen.
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Figure 14: Classifier weight norms for the iNaturalist 2018 validation set (8,142 classes in total) when classes are sorted by
descending values of NV;, where N; denotes the number of training sample for Class-j. Left: weight norms of cRT with or
without mixup. Right: weight norms of LWS with or without mixup. Light shade: true norm. Dark lines: smooth version. Best

viewed on screen.

As mentioned in Sec. 3.1 and Fig. 2, we observe that when applying mixup (orange line), the weight norms of the tail
classes tend to be larger and the weight norms of the head classes are decreased, which means mixup may be more friendly to
the tail classes. Here, we show more evidences that mixup reduces dominance of the head classes. In Figs. 13 and 14, norm of
these variants are trained on Places-LT and iNaturalist 2018, respectively. The results are similar and consistent with those

trained on ImageNet-LT.



