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In this document, we first present more implementa-
tion details of our differentiable matching algorithm (§1).
Then, we provide more qualitative instance-level parsing re-
sults on MHPv2 [8], DensePose-COCO [1], and PASCAL-
Person-Part [7] datasets (§2). Last, we offer several failure
cases for more comprehensive analysis of our model (§3).

1. Differentiable Keypoint Matching Algorithm
Here, we supplement the proposed differentiable key-

point matching algorithm with more details. Recall that in
the main article, we solve the following linear programming
problem individually for each limb to find a real-valued as-
signment matrix Y :

min
Y

Tr(−AY >), (1)

s.t. Y 1Nk′ ≤ 1Nk , Y >1Nk ≤ 1Nk′ , Y ≥ 0. (2)

Here, both the target function (Eq.(1)) and constraint func-
tions (Eq.(2)) are convex. Although there are some standard
solvers (e.g., simplex method, interior-point method) [6]
for such convex constrained optimization problem, they are
not differentiable. Fortunately, projected gradient descent
(PGD) algorithm provides us a powerful and differentiable
solution to this problem. Let us denote the constraints in
Eq. (2) as C = C1 ∩C2 ∩C3, where C1 = Y 1Nk′ ≤ 1Nk

,
C2 = Y >1Nk

≤ 1Nk′ , and C3 = Y ≥ 0. PGD estimates Y
by iterating the following equation:

Y ← FC(Y − αOf(Y )). (3)

Here, f(Y ) = Tr(−AY >), Of(Y ) = −A, and parameter
α denotes the step size of gradient descent. The projection
operation FC is also an optimization problem:

FC(Y ) = argmin
Y ′∈C

1

2
||Y ′−Y ||22. (4)

Given Y , FC tries to find a point Y ′∈C that is closet to Y .
To project Y onto the constraint set C1 ∩ C2 ∩ C3, we adopt
Dykstra’s cyclic projection algorithm, which is proved to
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Algorithm 1 Projected Gradient Descent for Differentiable Key-
point Matching

Input: A, α, T , N
Initialization: Y0 = zeros like(A)

1: for t = 1,· · ·, T do
2: X0

1 = Yt−1 − α∇f(Yt−1)
3: u1

0 = 0, u2
0 = 0, u3

0 = 0
4: for n = 1,· · ·, N do
5: X1

n = FC1(X0
n + u1

n−1), u1
n = X0

n + u1
n−1 −X1

n

6: X2
n = FC2(X1

n + u2
n−1), u2

n = X1
n + u2

n−1 −X2
n

7: X3
n = FC3(X2

n + u3
n−1), u3

n = X2
n + u3

n−1 −X3
n

8: X0
n+1 = X3

n

9: end for
10: Yt = X3

N

11: end for
12: return Ŷ = 1

T

∑T
t=1 Yt

be convergent for projection onto the non-empty intersec-
tion of convex sets in Hilbert space [4, 3]. Specifically, let
{Ck}Kk=1 be a family of K closed convex subsets in Hilbert
space such that

⋂K
k=1 Ck 6= ∅. The algorithm breaks the

whole constraint set into multiple individual sets, then it-
erates by passing sequentially over the individual sets and
projecting onto each one a deflected version of the previ-
ous iteration. Dykstra’s algorithm makes use of several ad-
ditional auxiliary variables. Starting with an initial point
X0

1 = Y −αOf(Y ) and u10 = · · · = uK0 = 0, the algo-
rithm updates the following equations at each iteration (i.e.,
n=1, 2, 3, · · · ):

X1
n = FC1(X0

n + u1
n−1),

u1
n = X0

n + u1
n−1 −X1

n,

. . .

Xk
n = FCk (Xk−1

n + uk
n−1),

uk
n = Xk−1

n + uk
n−1 −Xk

n,

. . .

XK
n = FCK (XK−1

n + uK
n−1),

uK
n = XK−1

n + uK
n−1 −XK

n .

(5)
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The sequence {XK
n }n converges to the solution of

Eq. (4) [2, 5].
In our problem, we have K=3 constraints. The projec-

tion operator FCk with respect to each constraint Ck can be
easily derived as follows:

FC1(Y )=

{
Y, if Y 1Nk′ ≤1Nk ,

Y − 1
Nk′

(Y 1Nk′−1Nk )1
>
Nk′ , otherwise;

FC2(Y )=

{
Y, if Y >1Nk ≤ 1Nk′ ,

Y − 1
Nk

1Nk (1
>
Nk
Y −1>N′

k
), otherwise;

FC3(Y )=Y +.

(6)

Here, FC3 is a ReLU operator. All these projection opera-
tors are differentiable, thus providing us a fully end-to-end
pose estimation solution.

We summarize the implementation of the above match-
ing algorithm in Alg. 1, where T andN indicate the number
of gradient descent (outer-loop) and projection (inner-loop)
steps, respectively. Note that at the t-th outer step, we first
get an initially corrected point X0

1 = Yt−1−α∇f(Yt−1),
and then run Dykstra’s algorithm iteratively to project this
point onto each individual constraint set (i.e., C1, C2, C3). In
the n-th inner step, we update the correction according to
the difference between pre- and post-projection. The final
solution is obtained by averaging the intermediate projected
assignment matrices, i.e., Ŷ = 1

T

∑T
t=1 Yt.

Implementation Details. Benefiting from limb scoring
which is able to characterize pair-wise matching between
joints, our network can converge very fast with only a small
number of steps. In the implementation, we empirically set
T =50, N =5, α=0.01 in all experiments. This configu-
ration leads to consistent performance improvement across
various datasets, as well as high efficiency.

2. Additional Qualitative Result
We provide additional instance-level human parsing

results on the three human parsing datasets, including
MHPv2 [8] val in Fig. 1, DensePose-COCO [1] test in
Fig. 2, and Pascal-Person-Part [7] test in Fig. 3. We ob-
serve that our approach can produce compelling parsing re-
sults under various challenging situations, e.g., occlusions,
small objects, extreme poses, etc.

3. Failure Case Analysis
To give a deeper insight into our method, we provide

three representative failure cases in Fig. 4. The first type
(i.e., 1st row) of common mistakes is caused by non-typical,
upside-down poses, which results in the failure of human
parsing in all levels. Increasing the rotation augmentation
visually seems to alleviate these issues, but the overall per-
formance on DensePose-COCO [1] greatly decreases. The
second type (i.e., 2nd row) of challenges is dim scenes in

which background objects are visually similar to humans.
Moreover, it is extremely challenging to parse humans at
very small scales in such low-light scenarios. Third, for
some cases in the presence of overlapping parts (i.e., 3rd

row), as highlighted in the yellow box, our model finds it
hard to precisely distinguish left and right parts (e.g., arms).
This further leads to inaccurate instance-level part discrim-
ination. In the future, we will therefore focus on addressing
these issues.

References
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Figure 1: Instance-level human semantic parsing results on MHPv2 [8] val.
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Figure 2: Instance-level human semantic parsing results on DensePose-COCO[1] test.
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Figure 3: Instance-level human semantic parsing results on PASCAL-Person-Part[7] test.
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Figure 4: Visualizations of typical failure cases on the DensePose-COCO [1] test.
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