
Effective Sparsification of Neural Networks with Global Sparsity Constraint
A. Appendix

In this appendix, we present additional MobileNetV1
[15] experiment on ImageNet-1K, the general experimen-
tal configurations, proof for equation 3, proof for theorem
1, analysis on the effect of temperature annealing and Py-
Torch code snippets of ProbMask.

A.1. MobileNetV1 on ImageNet-1K

Dataset ImageNet

Ratio ProbMask STR GMP

89% 65.19 62.10 61.80

94.1% 60.10 23.61 -

Table 4. ProbMask surpasses state-of-the-art methods by 3.09%
and 38.49% Top-1 Accuracy, demonstrating the effectiveness and
generalizability of ProbMask on lightweight MobileNetV1 [15]
architectures. Following the setting of [18], 89% and 94.1% spar-
sity is chosen to compare at the same pruning rate.

A.2. Experimental Configurations

Dataset CIFAR ImageNet

GPUs 1 4

Batch Size 256 256

Epochs 300 100

Weight Optimizer SGD SGD

Weight Learning Rate 0.1 0.256

Weight Momentum 0.9 0.875

Probability Optimizer Adam Adam

Probability Learning Rate 6e-3 6e-3

t1 48 16

t2 180 60

Warmup 7 3

Label Smoothing 7 0.1

Table 5. The bold-face probability learning rate 6e-3 is the only
hyperparameter obtained by grid search on CIFAR-10 experiments
on a small size network Conv-4 [6] and applied directly to larger
datasets and networks. This demonstrates the generality of our
proposed ProbMask to different datasets, different networks and
different tasks, i.e., pruning networks and finding supermasks.
Other hyperparameters are applied following the same practice of
previous works [29, 18, 22, 41]. The channels of ResNet32 for CI-
FAR experiments are doubled following the same practice of [33].
The temperature annealing scheme follows the same practice of
[37]

A.3. Proof for equation 3

Proof. The PDF (probability density function) of
Gumbel(µ, 1) is

f(z;µ) = e−(z−µ)−e
−(z−µ)

. (9)

The CDF (cumulative distribution function) of
Gumbel(µ, 1) is

F (z;µ) = e−e
−(z−µ)

. (10)

We just need to prove that

∀i, P (log(si)− log(1− si) + g1,i − g2,i ≥ 0) = si.
(11)

g1,i and g2,i are two Gumbel(0, 1) random variables sam-
pled for si. The probability is taken with respect to g1,i and
g2,i. si can be seen as a constant in the following proof.

Let z1 = log(si) + g1,i, z2 = log(1 − si) + g2,i. Then
z1 ∼ Gumbel(log(si), 1), z2 ∼ Gumbel(log(1− si), 1).

P (log(si)− log(1− si) + g1,i − g2,i ≥ 0) (12)
=P (z2 ≤ z1) (13)

=

∫ +∞

−∞

∫ z1

−∞
f(z2; log(1− si))f(z1; log(si))dz2dz1

(14)

=

∫ +∞

−∞
F (z1; log(1− si))f(z1; log(si))dz1 (15)

=

∫ +∞

−∞
e−e

−(z1−log(1−si)) · e−(z1−log si)−e
−(z1−log si)

dz1

(16)

=

∫ +∞

−∞
e−e

−z1 (1−si)−z1+log si−e−z1sidz1 (17)

=si

∫ +∞

−∞
e−e

−z1−z1dz1 (18)

=si (19)∫ +∞
−∞ e−e

−z1−z1dz1 is the integral of a Gumbel(0,1) random
variable.

A.4. Proof for Theorem 1

Proof. The projection from z to set C can be formulated in
the following optimization problem:

min
s∈Rn

1

2
‖s− z‖2,

s.t.1>s ≤ K and 0 ≤ si ≤ 1.



Then we solve the problem with Lagrangian multiplier
method.

L(s, v) =
1

2
‖s− z‖2 + v(1>s−K) (20)

=
1

2
‖s− (z − v1)‖2 + v(1>z −K)− n

2
v2.

(21)

with v ≥ 0 and 0 ≤ si ≤ 1. Minimize the problem with
respect to s, we have

s̃ = 1z−v1≥1 + (z − v1)1>z−v1>0 (22)

Then we have

g(v) =L(s̃, v)

=
1

2
‖[z − v1]− + [z − (v + 1)1]+‖2

+ v(1>z − s)− n

2
v2

=
1

2
‖[z − v1]−‖2 +

1

2
‖[z − (v + 1)1]+‖2

+ v(1>z − s)− n

2
v2, v ≥ 0.

g′(v) =1>[v1− z]+ + 1>[(v + 1)1− z]−

+ (1Tz − s)− nv
=1>min(1,max(0, z − v1))−K, v ≥ 0.

It is easy to verify that g′(v) is a monotone decreasing func-
tion with respect to v and we can use a bisection method
solve the equation g′(v) = 0 with solution v∗1 . Then we
get that g(v) increases in the range of (−∞, v∗1] and de-
creases in the range of [v∗1 ,+∞). The maximum of g(v) is
achieved at 0 if v∗1 ≤ 0 and v∗1 if v∗1 > 0. Then we set
v∗2 = max(0, v∗1). Finally we have

s∗ =1z−v∗21≥1 + (z − v∗21)1>z−v∗21>0 (23)

= min(1,max(0, z − v∗21)). (24)

A.5. Temperature Annealing

Thanks to the `1 norm and cube [0, 1]n in our constraint,
most probabilities will converge to 0 or 1 at the end of train-
ing, which is shown in

s = min(1,max(0, z − v∗21)).

Traditional temperature annealing starts with a relative high
value, i.e., 1 to have a smooth relaxation and gradually de-
crease to a small value to make relaxation close to the orig-
inal objective function. In this section we analyze how the
temperature annealing contributes to the training process,
especially helping probabilities converge to 0 or 1.

Firstly consider the gradient:

∇siL
(
w, σ

( log( s
1−s ) + g1 − g0

τ

))
(25)

=∇σiL
(
w, σ

( log( s
1−s ) + g1 − g0

τ

))
S, (26)

where S = ∇siσ(
log(

si
1−si

)+g1,i−g0,i
τ ). We can see that the

larger the magnitude |S|, zi (step 8 in Algorithm 1) will
vary more greatly.

Take x = 1
τ ∈ [1,+∞), r = log(si) − log(1 − si) +

g1,i − g0,i. We have

S =
σ(rx)(1− σ(rx))x

si(1− si)
(27)

Since S is an even function w.r.t r, we just consider the case
r > 0. Then we take the gradient w.r.t to x.

∇x (σ(rx)(1− σ(rx))x) (28)
=σ(rx)(1− σ(rx))(rx− 2rxσ(rx) + 1) (29)

Take y = rx, y > 0 since x > 0 and r > 0. The solution
to y− 2yσ(y) + 1 = 0 is around 1.55. S is a monotonically
increasing function for x ∈ (0, 1.55r ] and monotonically de-
creasing function for x ∈ [ 1.55r ,+∞).
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Figure 8. The value of S changes with τ approching zero.

Now we analyze S using two special cases. Take g =
g1,i − g2,i, g ∼ Logistic(0, 1). Take si = 0.99 and g =
0.04 for example. r = log(99) + 0.1 ≈ 4.63. S is
monotonically decreasing function for x ∈ [1,+∞). Take
si = 0.5 and g = 0.04 for example. S would increase as τ
decreases to 0.03, since we set τ = 0.97(1 − t/T ) + 0.03.
We plot the corresponding graph in Figure 8.

From the above two examples, we know that for proba-
bilities around 0.5, S becomes larger in the training process,
potentially making |zi| large and finally make probability
come close to 0 or 1 after projection. For probabilities close
to 0 or 1, S becomes smaller in the training process, making
them stay close to 0 or 1 at the end of training.



1 class ProbMaskConv(nn.Conv2d):
2 def __init__(self, *args, **kwargs):
3 super().__init__(*args, **kwargs)
4 self.scores = nn.Parameter(torch.Tensor(self.weight.size())) # Probability
5 self.subnet = None # Mask
6 self.scores.data = (torch.ones_like(self.scores)* parser_args.score_init_constant)
7

8 def forward(self, x): # Sample a mask and forward propagation
9 if not parser_args.discrete: # Training

10 eps = 1e-20
11 temp = parser_args.T
12 uniform0 = torch.rand_like(self.scores)
13 uniform1 = torch.rand_like(self.scores)
14 noise = -torch.log(torch.log(uniform0 + eps) / torch.log(uniform1 + eps) + eps)
15 self.subnet = torch.sigmoid((torch.log(self.scores + eps) - torch.log(1.0 - self.scores +

eps) + noise) * temp)
16 else: # Testing
17 self.subnet = (torch.rand_like(self.scores) < self.scores).float()
18 w = self.weight * self.subnet
19 x = F.conv2d(x, w, self.bias, self.stride, self.padding, self.dilation, self.groups)
20 return x

Listing 1. PyTorch Code Snippets for ProbMaskConv.

1 def constrainScoreByWhole(model):
2 total = 0
3 for n, m in model.named_modules():
4 if hasattr(m, "scores"):
5 total += m.scores.nelement()
6 v = solveV(model, total) # Calculate v_2ˆ* in Theorem 1
7 for n, m in model.named_modules():
8 if hasattr(m, "scores"):
9 m.scores.sub_(v).clamp_(0, 1) # Do the projection

10

11 def solveV(model, total): # Solve solution to Equation 7 with bisection search
12 k = total * parser_args.prune_rate
13 a, b = 0, 0
14 for n, m in model.named_modules():
15 if hasattr(m, "scores"):
16 b = max(b, m.scores.max())
17 def f(v):
18 s = 0
19 for n, m in model.named_modules():
20 if hasattr(m, "scores"):
21 s += (m.scores - v).clamp(0, 1).sum()
22 return s - k
23 if f(0) < 0:
24 return 0
25 itr = 0
26 while (1):
27 itr += 1
28 v = (a + b) / 2
29 obj = f(v)
30 if abs(obj) < 1e-3 or itr > 20:
31 break
32 if obj < 0:
33 b = v
34 else:
35 a = v
36 v = max(0, v)
37 return v

Listing 2. PyTorch Code Snippets for Projection in Theorem 1


