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This document provides additional materials to supple-
ment our main manuscript. We first present more details
about Q-Net in §1, and then provide additional quantita-
tive results on FFIW10K val in §2. Finally, we offer extra
statistics and visual examples of FFIW10K in §3.

1. More Details on Q-Net
Detailed Network Architecture. We employ VGG16 [11]
as the backbone network of Q-Net. Let q ∈ R512 denote
the backbone feature. Two small multi-layer perceptrons
are further added for score regression and domain adversar-
ial learning, respectively. The score regression head has the
following architecture: q→FC(1024)→FC(1024)→FC(2),
and the domain adversarial head is implemented as:
q→FC(1024)→FC(1024)→FC(3). Here, FC means a fully-
connected layer.
Training Details. We train Q-Net using the SGD opti-
mizer with a min-batch size of 128, learning rate of 1e-4
and momentum of 0.9. All the training images are resized
to 224×224. During training, the domain-regularization pa-
rameter α is initialized as 0 and gradually increased to 1
following the schedule [5]:

α =
2

1 + exp(−10t)
− 1,where t = n/N. (1)

Here, n and N indicate the number of current epoch and
total epoch, respectively. This strategy enables the domain
classifier to be more robust to noisy signal at the early stages
of the training procedure.
User Study. In order to evaluate the performance of Q-Net,
we carry out a user study to examine the consistency be-
tween model predictions and human assessments. Specif-
ically, we randomly select 2,000 pairs of swapped faces.
Each pair is then presented to three humans to determine
which face is of better quality. We note that for some pairs,
both faces may be in a similar quality level, under which
condition it will be difficult for humans or Q-Net to deter-
mine the correct ranking. To this end, we discard such pairs
and only keep the pairs that all three observers have con-
sistent opinions. This finally leads to a total of 1,357 pairs.
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For each remaining pair, its Q-Net ranking is regarded cor-
rect if it is consistent with the human ranking. The overall
accuracy of Q-Net ranking on the 1,357 pairs is 85.63%,
showing a strong consistency with human assessment.

In addition, to guarantee the quality of tampered faces in
FFIW10K, we need to determine a suitable quality thresh-
old so that tampered faces with quality scores below the
threshold can be regarded as low quality and thus can be
simply discarded. Another user study has been conducted
for this. In particular, we collect 4,000 samples whose qual-
ity scores fall into ranges [0.4, 0.5), [0.5, 0.6), [0.6, 0.7), or
[0.7, 0.8), 1,000 samples for each range. For each sample,
we present it to three human observers for rating it at five
levels (i.e., clearly fake, fake, borderline, real, clearly real).
Then, a sample is considered as high-quality if a majority
of its three rates are ‘real’ or ‘clearly real’. The results are
summarized in Table 1. As seen, 89.5% samples with scores
in [0.6, 0.7) are regarded as high-quality. Although the ratio
is slightly higher for the range [0.7, 0.8), we find that more
high-fidelity faces will be discarded if only considering the
samples with scores above 0.7. Therefore, we select 0.6 as
the final threshold.

score ranges [0.4, 0.5) [0.5, 0.6) [0.6, 0.7) [0.7, 0.8)

number of test sample 1,000 1,000 1,000 1,000

ratio of high-quality samples 43.9% 67.6% 89.5% 91.3%

Table 1: Results of the user study to determine the quality thresh-
old.

Qualitative Results. Fig. 1 shows some tampered faces
along with their quality scores predicted by Q-Net. We see
that Q-Net can make accurate predictions that well align
with human perception.

2. More Quantitative Result

We show benchmarking results of all methods on the
val set of FFIW10K in Table 2. We see that the results well
align with those in FFIW10K test, as reported in Table 2
of the main manuscript. The proposed approach achieves
the best performance across all metrics, using only video-
level labels for training.
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Figure 1: Visualizations of tampered faces along with correspond-
ing quality scores predicted by Q-Net.

classification localization
Methods

ACC (%) AUC (%) mAP (%)

frame-based methods: using face-level labels as supervision
Xception [10] 55.3 57.0 18.6
MesoNet [2] 56.7 58.1 19.2

PatchForensics [4] 60.3 63.4 19.5
FWA [7] 60.9 63.7 19.6

video-based methods: using face-level labels as supervision
TSN [13] 63.1 64.6 22.5
C3D [12] 65.5 66.3 24.7

I3D [3] 70.9 71.7 30.8

video-based methods: using video-level labels as supervision
S-MIL [6] 60.8 62.3 -

Ours 71.3 73.5 31.1

Table 2: Quantitative results on val set of FFIW10K. The best
scores are highlighted in bold.

3. FFIW10K Dataset

More Statistics. In Table 3, we summarize the number of
forged videos generated by each of the three face swapping
methods (i.e., FSGAN[8], DeepFaceLab[9], FaceSwap[1])
in FFIW10K. We see that a majority of videos are gener-
ated by FSGAN [8] because the algorithm is of high effi-
ciency and thus allows for large-scale video manipulation.
DeepFaceLab[9] generally creates videos with higher quali-
ties than FSGAN, however, the approach requires expensive
training procedure for each manipulation, limiting its prac-
tical application. FaceSwap [1] is a non-learning method
which is fast but with poor generation performance. We
emphasize that all the videos in FFIW10K are selected by
Q-Net to guarantee the high quality.

For completeness, we offer the statistics regarding gen-
der and video resolution in Fig. 2. The distributions well
align with real-world data distributions.

Methods FSGAN[8] DeepFaceLab[9] FaceSwap[1]
# fake videos 5,800 2,200 2,000

Table 3: Statistics of the number of videos manipulated by each
of the three face swapping approaches.

Figure 2: Left: Gender distribution over all manipulated videos.
Right: Video resolution distribution of pristine video clips.

More Visual Examples. In Fig. 3 and Fig. 4, we
present additional visual examples in the proposed dataset,
i.e., FFIW10K. The synthetic faces are highlighted by
red boxes, and zoomed in for clear presentation. We
see that FFIW10K provides high-fidelity tampered faces
in various challenging cases (e.g., multiple faces, clut-
tered background, small scale, profile faces). This makes
FFIW10K well suitable for training and evaluating face
forgery detection methods, especially in multi-person sce-
narios.
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Figure 3: More visual examples in FFIW10K. The forged faces are highlighted by red boxes, and zoomed in for clear presentation.
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Figure 4: More visual examples in FFIW10K. The forged faces are highlighted by red boxes, and zoomed in for clear presentation.
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