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1. Channel-shared GHRM

In order to exploit the high-order relations in the long-
term actions, our proposed Graph-based High-order Rela-
tion Modeling (GHRM) module aims to incorporate the in-
formation from all the other graphs through the adjacent
matrix Ai and the embedding layer ρi in the i-th graph Gi
during graph reasoning for the i-th basic relation.

However, the number of parameters of the two trainable
layers gi (used to construct the adjacent matrixAi), ρi in the
i-th graph are both K · C2, which means that if we want to
modelK basic relations in the long-term actions, we have to
useK graphs, thus the number of parameters of our GHRM
will increase to K times that of Vanilla-GCN. In order to
make our model more lightweight and prevent overfitting,
we adopt a channel sharing strategy on the layer gi and the
layer ρi during graph reasoning on each graph Gi, which
enables our GHRM to efficiently incorporate the informa-
tion from all the other graphs in a channel-shared manner.
In the following, we will show how to construct the adjacent
matrixAi in a channel-shared manner and the details of the
channel-shared embedding layer ρi in each graph Gi.

- Channel-shared Construction of Adjacent Matrix Ai.
To construct the adjacent matrix Ai in a channel-shared
manner, for the u-th segment node xiu ∈ RC and the v-
th segment node xiv ∈ RC in the i-th graph, if the edge
E i(u,v) in E i is 1 which means there is an edge between seg-
ment nodes xiu and xiv , GHRM will calculate the connec-
tion strength value Ai

(u,v) between them1 by applying the
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channel-shared layer gi as follows:

Ai
(u,v) =

exp((x̃u)
T x̃v)∑T

w=1 exp((x̃u)
T x̃w)

,

x̃u = [gi(xu[0]), g
i(xu[1]), · · · , gi(xu[C − 1])]T ,

xu = [x1u, · · · , βi(xiu), · · · , xKu ],

(1)

where xu ∈ RC×K is concatenated from the u-th segment
node in all graphs. βi is the embedding layer for the seg-
ment nodes in the i-th graph. gi : RK → R is the trainable
layer in the i-th graph, which transforms feature xu into fea-
ture x̃u ∈ RC in the i-th relation space in a channel-shared
manner (i.e., layer gi is shared on the channel dimension).
Therefore, by using the channel-shared layer gi, our model
is more lightweight, and the high-order relations will be ex-
ploited as the information from all the other graphs can still
be incorporated when constrcuting the adjacent matrix Ai

of the i-th graph.
- Channel-shared Embedding Layer ρi. Similarly, we can
reformulate the embedding layer ρi in the i-th graph in a
channel-shared manner as follows:

ρi(X1
agg, · · · , XK

agg) = δ([X(0)
aggWi, · · · , X(C−1)

agg Wi]),

X(c)
agg = [X1

agg[:, c], · · · , γi(Xi
agg)[:, c], · · · , XK

agg[:, c]],
(2)

where Xi
agg ∈ RT×C is the aggregated node feature in the

i-th graph, X(c)
agg ∈ RT×K is concatenated from the c-th

channel of the aggregated node feature in all graphs. δ is
a nonlinear function. Wi ∈ RK×1 is the parameter of the
channel-shared embedding layer ρi in the i-th graph. γi is
the embedding layer for the aggregated node feature Xi

agg

in the i-th graph. When embedding the i-th aggregated node
feature Xi

agg in the i-th graph, the embedding layer ρi in-
corporates the information from all the other graphs in a

1If the edge Ei
(u,v)

is 0, the connection strength value Ai
(u,v)

between
these two nodes is set to 0.
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channel-shared manner, thus the high-order relations can be
exploited.

According to the descriptions above, the number of pa-
rameters in the two channel-shared trainable layers gi, ρi

are both K, which is 1
C2 times that of original GHRM and

K
C2 times that of Vanilla-GCN. The channel sharing policy
makes our GHRM more efficient while keeping the abil-
ity to incorporate the information from all the other graphs
when graph reasoning on each graph, thus the high-order
relations in the long-term actions can still be well exploited.

2. More Visualizations of Adjacent Matrices

In order to more intuitively understand the advantages of
the proposed GHRM over Vanilla-GCN, we provide more
visualizations of the adjacent matrices in Vanilla-GCN and
GHRM. We randomly select two video samples from Cha-
rades [1], and use 16 graphs in both Vanilla-GCN and
GHRM. The visualizations are shown in Figure 1 and Fig-
ure 2. We can see that the adjacent matrices in Vanilla-GCN
can only model similar patterns, while the adjacent matri-
ces in our GHRM can model diverse patterns. This phe-
nomenon indicates that different graphs can interact with
each other in GHRM, such that different basic relations will
be figured out and the high-order relations in the long-term
actions can be naturally exploited.

3. Analysis on the Window Size W in
Temporal-GHRM

The Temporal-GHRM branch in the GHRM-layer aims
to model the local temporal high-order relations in the long-
term actions in a local manner, which restricts the number
of temporal neighboring nodes of each node to window size
W . Here we analyze the effects of using different win-
dow size W in the Temporal-GHRM branch on Charades.
As shown in Table 1, using a larger window size generally
brings better results, and our model achieves the best result
when the window size is 7, which means that connecting
each node with its six neighboring nodes is the most suit-
able for modeling the local temporal high-order relations.

Window Size W mAP(%) on Charades
W=3 36.3
W=5 36.7
W=7 37.3
W=9 37.1

Table 1. Results of using different window sizeW on Charades.
Our model achieves the best result when the window size is 7.
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(a) Vanilla-GCN

(b) GHRM
Figure 1. Visualization of the adjacent matrices for the first video sample. Figure (a) shows 16 adjacent matrices in Vanilla-GCN, and
Figure (b) shows 16 adjacent matrices in GHRM.
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(a) Vanilla-GCN

(b) GHRM
Figure 2. Visualization of the adjacent matrices for the second video sample. Figure (a) shows 16 adjacent matrices in Vanilla-GCN, and
Figure (b) shows 16 adjacent matrices in GHRM.
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