Supplementary Material for
Learning Placeholders for Open-Set Recognition

Da-Wei Zhou

Han-Jia Ye'

De-Chuan Zhan

State Key Laboratory for Novel Software Technology, Nanjing University

{zhoudw, yehj}@lamda.nju.edu.cn, zhandc@nju.edu.cn

Abstract

Open-set recognition is proposed to maintain classifica-
tion performance on known classes and reject unknowns. We
proposed to learn PlaceholdeRs for Open-SEt Recognition
(PROSER), which prepares for the unknown classes by al-
locating placeholders for both data and classifier. In the
supplementary, we describe the concrete settings for all the
problems in the main paper together with additional exper-
imental results. We also carefully discuss the advantages
and disadvantages of vanilla mixup versus manifold mixup
in novel instances generating.

1. Additional Experimental Results

This section introduces some additional experiment re-
sults and then gives the implementation details.

1.1. Sensitivity about Hyper-Parameters

In this section, we conduct experiments to explore the in-
fluence of hyper-parameters with the CIFAR100 dataset. The
implementation details are the same as the ablations of the
main paper. We choose 15 classes out of 100 as known ones,
and another 15 out of 85 are open-set categories, making
known-unknown ratio 1 : 1. The performance is measured
with macro F1 over 15 known classes and unknown.

In the main paper, the overall loss is described as:

ltotal = +7*l27 (1)
where Iy = 30 op, L(f(x),y) + BUf(x) \ y, K +
1) is the classifier placeholder loss, and Iy
2 (i)eny, LW, W] Ppost(Xpre), K + 1) is the data
placeholder loss, yielding three different parts. In this
section, we report the effects of these hyper-parameters
B and v as well as dummy classifier number C' in Fig-
ure 1. Considering the trade-off parameters are adopted
to balance the loss of each parts, we tune them in range of

TCorrespondence to: Han-Jia Ye (yehj@lamda.nju.edu.cn)

0.71

o /’W

0.68

Macro F1
Macro F1
°
2

0.67

T3 5 7 9 11 13 15
Dummy Classifier Number

(a) Trade-off parameter (b) Dummy classifier number

Figure 1. Sensitivity of hyper-parameters on CIFAR100 dataset.
We report macro F1 between 15 known classes and unknown.

{0,1072,1071,10°,10'}. As aresult, we can get 25 results,
corresponding to each combination from the set.

Note that we have provided an ablation study in the main
paper, where ‘Mixup’ stands for only equipping the plain
CNN with data placeholders, i.e., v — oo. Correspondingly,
‘Dummy’ stands for only training dummy classifiers, i.e.,
v = 0. The results in Figure 1(a) are consistent with the
former conclusions that only employ part of the placeholder,
i.e., data or classifier, is not enough to produce the best
performance. Additionally, we can observe that 5 =1,y =
0.1 leads to the best performance of the current task, which
means a combination of data and classifier placeholders can
jointly improve the model’s performance. This also guides
the hyper-parameters setup in other tasks. We also show the
influence of classifier placeholder number C' in Figure 1(b).
Since we arrange 15 classes as the open-set class, we tune
it in the range of {1,3,...,15}. The results validate that
multiple dummy classifiers increase the diversity of classifier
placeholders, and can match novel patterns with the nearest
classifier. However, learning too many dummy classifiers
does not help open-set recognition, which shows a decline
when C > 11.

1.2. Running Time Comparison

[9] point out that generative-based methods need more
time in model training and instance generating. As a result,

SoftMax
OpenMax
OSRCI
GFROSR
Proser

Running Time (s)
=

Methods

Figure 2. Running time comparison for different methods on
MNIST dataset. The y-axis is in the logarithmic scale.

it takes more time to implement these methods in real-world
applications. We conduct experiments on MNIST, and com-
pare to [3, 6, 1] as well as softmax in terms of the training
time. The results are reported in Figure 2. The running time
of generative methods includes training generative models
and novel instance generation.

From Figure 2, we can tell that PROSER is of the same or-
der of magnitude with Softmax and OpenMax [!]. In compar-
ison, generative-based methods OSRCI [3] and GFROSR [6]
consume much more time than PROSER. OSRCI needs to
generate counterfactual images as novelty, and augment the
initial dataset with these generated open-set instances, which
consumes the most time. GFROSR trains an extra generative
model to reconstruct images, and the reconstructed images
are fed into the classification model, which consumes the
second-most time. Since we only generate open-set classes
with manifold mixup, the mixup loss is based on mixed em-
bedding, which means we do not need more steps in training
novel patterns. As a result, PROSER can generate novel
classes and train models efficiently.

1.3. Manifold Mixup VS Vanilla Mixup

In the main paper, we discuss the pros and cons of mani-
fold mixup [8] and the reason we do not adopt vanilla mixup
in the input space. In this section, we give the detailed
pseudo code for manifold mixup for data placeholders and
the performance comparison between manifold mixup and
vanilla mixup [10, 7].

The guideline of generating data placeholders with mani-
fold mixup is shown in Algorithm 1. Comparing to vanilla
training, where mini-batch instances are fed into the model
to forward passing and conduct back-propagation, our pro-
posed method consumes the same complexity of forwarding
and backward passing. Line 1 forward the mini-batch with
the pre-embedding module, and get the middle representa-
tion of the original batch. These middle-representations are

Algorithm 1 Manifold mixup for data placeholders

Input: Embedding module ¢(-), which can be decomposed
of pre-embedding ¢, () and post-embedding ¢pos:(-);
Closed-set mini-batch: Dy, = {(x;, yi)}iB:l;

Output: Updated classifier f

1: Calculate the pre-embeddings of this mini-batch
¢pre (DtT)7

2: Shuffle the mini-batch with random order, and

get shuffled (embedding,label) pair Dgpyege =

{(Spre (%),)}y

for:=1,--- ,Bdo
Mask the pairs of the same class, i.e., y; = 9; ;

end for

Sample A from Beta distribution;

Calculate the manifold mixup pre-embeddings X,,,.. with

unmasked pairs, i.e., data placeholders;

8: Calculate the post-embeddings of X, ie.,
¢post (ip're);

9: Calculate the manifold mixup loss < Eq. 7;

A

(Generated novel |nsl/nn£e§, -0 = Generated novel instances

K
K
K
™
Real

(a) Vanilla mixup (b) Manifold mixup

Figure 3. Visualization of generated novel instances and real dis-
tribution of novel instances. Left: novel instances generated by
vanilla mixup. Right: novel instances generated by manifold mixup.
Red crosses stand for generated novel instances, colored dots stand
for known class instances, and black crosses stand for real distribu-
tion of novel class. The generated space of vanilla mixup covers
known space, which may hurt the learning of embedding space.

then shuffled with random order to form Dgpygne, as shown in
Line 2. To avoid mixing two instances from the same class,
we mask the pairs of the same class with Line 4, and then
conduct mixup to generate data placeholders in Line 7.

Note that the size of mixed embeddings X,,,.. should be
no more than B, since we only combine unmasked instances.
These data placeholders are then fed into the post-embedding
module to get the ultimate representation in Line 8. As a
result, the total forward and backward consumption is no
more than vanilla training.

We also test the performance comparison between man-
ifold mixup and vanilla mixup, i.e., replace the ¢,,. into
identity mapping and mixup in the input space. As we stated
in the main paper, we argue that manifold mixup is optimiz-

0.8

2.0 0.6

0.4

0.2

(a) a=04

b a=1

Figure 4. Kernel density estimation of Beta distribution when « varies.

Table 1. Ablation study over manifold mixup and vanilla mixup,
the configurations are the same as in Figure 1, where 15 classes
are selected from CIFAR100 as known classes and another 15 are
open-set classes.

o 04 | 1 |15] 2
| 623 | 64.4 | 63.9 | 64.1
Manifold Mixup | 63.0 | 68.6 | 70.0 | 70.7

Vanilla Mixup

able, and its benefits help the process of novelty generation.
[8] proved that manifold mixup can move the decision bound-
ary away from the data in all directions, which results in a
compact embedding space. With the help of these data place-
holders, the embeddings of known classes would be much
tighter, thus leaving more place for embeddings of unknown
classes. Moreover, we conduct ablations to validate the ef-
fectiveness of manifold mixup in Table 1. The experiment
configuration is the same as Figure 1, and we tune different
« in the Beta distribution to choose the best hyper-parameter
a. Since the mixup percentage A is influenced by «, we show
the kernel density estimation with different o in Figure 4.
We can infer that v < 1 tends to sample A near O or 1, while
a > 1 tends to sample A near 0.5. Correspondingly, o = 1
would result in a uniform distribution.

Let us return to our intuition where we try to synthesis
novel patterns with known instances. Considering the places
beside one class should not be a new class, while the middle
point between two classes is often low-confidence area, an
intuitive way we seek to mimic novel classes is to use o > 1,
as shown in Figure 4(c). To our relief, the results in Table 1
also validate the assumption that & = 2 leads to the best
performance. The results also indicate that compared to
vanilla mixup, manifold mixup leads to a more compact
embedding space, which boosts open-set recognition. The
results also guide the setup of « in all experiments. We adopt
« = 2 in all experiments in the main paper without tuning
the best task-specific value.

We also show the embedding of generated novel instances
in Figure 3. We conduct experiments under the same set-
ting as the visualization experiment part in the main paper,
and show the embedding of generated instances by vanilla
mixup and manifold mixup. The 3 parameter is the same
between these two methods, and we can infer from Figure 3
that manifold mixup generates instances more similarly than
the vanilla method. Besides, the generated space of vanilla
mixup is much more than novel space, which also involves
known space. As a result, utilizing vanilla mixup may de-
stroy the learned embedding space to some extent.

2. Experiment Implementation

In this part, we introduce the implementation details, i.e.,
the full results of unknown detection, hyper-parameter selec-
tion, model optimization, and dataset configuration.

2.1. Unknown Detection Results

In the main paper, we report the averaged AUC of un-
known detection tasks. We simulate the sampling process
over five trials [3] to report the mean and standard devia-
tion, and the full results are shown in Table 2. We report
the baseline performance from [6, 9, 3]. Note that N.R. in
the table means that the original paper did not report the
standard deviation.

2.2. Implementation Details of PROSER.

We employ the same backbone architecture as [6, 3].
PROSER is trained with SGD with momentum of 0.9, and
the initial learning rate is set to 0.001 in the experiment. We
fix the batch size to 128 for all datasets. As we discussed
in the hyper-parameter part, we set 3 = 1,y = 0.1, and the
number of classifier placeholders is set to 5 for all datasets.
The calibration bias is obtained by ensuring 95% validation
data be recognized as known. The o parameter in Beta distri-
bution is set to 2 for all datasets. We conduct the experiment
on Nvidia RTX 2080-Ti GPU with Pytorch 1.6.0 [5].

Table 2. Unknown detection performance in terms of AUC (mean=+std). Results are averaged among five randomized trials. N. R. means the

original work did not provide a particular value.

Methods | SVHN | CIFARIO | CIFAR+10 | CIFAR+50 | Tiny-ImageNet
Softmax 88.6+1.4 | 677438 | 8L6 £ N.R. | 805+ N.R. | 57.7+N.R.
OpenMax [1] | 89.4+13 | 695+44 | 81.7+N.R. | 79.6+N.R. | 57.6 £ N.R.
G-OpenMax [2] | 89.6 £ 1.7 | 67.5+4.4 | 827+ N.R. | 819+ N.R. | 580+N.R.
OSRCI [3] 91.0+1.0 | 69.9+38 | 838+ N.R. | 827+ N.R. | 58.6+N.R.
C2AE [4] 892+13 | 71.1+08 | 81.0+0.5 | 803+00 | 581+19
CROSR [9] 899+18 | N.R. N.R. N.R. 58.9 £ N.R.
GFROSR[0] | 93.5+1.8 | 83.1+39 | 915+02 | 91.3+£02 | 647+12
PROSER | 94306 | 891+ 16 | 96.0+04 | 953+03 | 693+05

ImageNet-crop

ImageNet-resize

LSUN-crop

LSUN-resize

FOND
R0
i

ik

Figure 5. Dataset example of CIFAR10 open-set recognition, each
line stands for the open-set class in main paper.

2.3. Dataset Configuration.

We also show the dataset example of CIFAR10 open-set
recognition tasks in the main paper in Figure 5. The ‘crop’
datasets is part of the original picture, and ‘resize’ datasets is
the full original picture resized into 32*32 pixel. As a result,
detecting outliers from ‘crop’ datasets is easier than that of
‘resize’ datasets. This is consistent with macro-F1 results in
the main paper.

References

[1] Abhijit Bendale and Terrance E Boult. Towards open
set deep networks. In CVPR, pages 1563-1572, 2016.
2,4

[2] Zongyuan Ge, Sergey Demyanov, Zetao Chen, and
Rahil Garnavi. Generative openmax for multi-class
open set classification. In BMVC, 2017. 4

[3] Lawrence Neal, Matthew Olson, Xiaoli Fern, Weng-
Keen Wong, and Fuxin Li. Open set learning with
counterfactual images. In ECCV, pages 613-628, 2018.
2,3,4

[4] Poojan Oza and Vishal M Patel. C2ae: Class condi-
tioned auto-encoder for open-set recognition. In CVPR,
pages 2307-2316, 2019. 4

[5] Adam Paszke, Sam Gross, Francisco Massa, Adam
Lerer, James Bradbury, Gregory Chanan, Trevor
Killeen, Zeming Lin, Natalia Gimelshein, Luca Antiga,
et al. Pytorch: An imperative style, high-performance
deep learning library. In NeurIPS, pages 8026—8037,
2019. 3

[6] Pramuditha Perera, Vlad I Morariu, Rajiv Jain, Varun
Manjunatha, Curtis Wigington, Vicente Ordonez, and
Vishal M Patel. Generative-discriminative feature rep-
resentations for open-set recognition. In CVPR, pages
11814-11823, 2020. 2, 3, 4

[7]1 Yuji Tokozume, Yoshitaka Ushiku, and Tatsuya Harada.
Between-class learning for image classification. In
CVPR, pages 5486-5494, 2018. 2

[8] Vikas Verma, Alex Lamb, Christopher Beckham, Amir
Najafi, Ioannis Mitliagkas, David Lopez-Paz, and
Yoshua Bengio. Manifold mixup: Better represen-
tations by interpolating hidden states. In ICML, pages
6438-6447, 2019. 2, 3

[9] Ryota Yoshihashi, Wen Shao, Rei Kawakami, Shaodi
You, Makoto lida, and Takeshi Naemura. Classification-
reconstruction learning for open-set recognition. In
CVPR, pages 4016-4025, 2019. 1, 3,4

[10] Hongyi Zhang, Moustapha Cisse, Yann N. Dauphin,
and David Lopez-Paz. mixup: Beyond empirical risk
minimization. In /CLR, 2018. 2

