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1 Homographic rectification

Here, we describe the procedure for 2D backprojection of a point in the camera
image plane in the camera’s intrinsic coordinate system relative to the projection
center, rcamim = (xcam

im , ycam
im , fph), onto the object plane in the world reference

frame. This procedure ignores 3D height variation, which is accounted for in a
separate step (see main text). For clarity, cam superscripts indicate that the
variables are defined in the camera’s reference frame, and obj and im subscripts
reference the object and image planes, respectively.

1. Rotation in the image plane by θ:

(xcam
im , ycam

im )← (xcam
im , ycam

im )R(θ), (1)

where R(θ) is a 2D rotation matrix. Let rcamim be accordingly updated.

2. Backprojection to the object plane:

rcamobj =
Z

n̂cam
obj · rcamim

rcamim , (2)

where · denotes a dot product and n̂cam
obj = (nx, ny, nz) is the unit normal

vector of the object plane defined in the camera’s reference frame. For
example, n̂cam

obj = (0, 0,−1) when the image and object planes are parallel.

3. Coordinate change via 3D rotation from camera coordinates, rcamobj , to

world coordinates, robj = (xobj , yobj ) (i.e., by angle, cos−1(−nz), about
axis, (−ny, nx, 0)):

xobj =
Z(1 + nz)

(
(n2y + nz − 1)xim − nxnyyim

)
nz(n2x + n2y)n̂cam

obj · rcamim

,

yobj =
Z(1 + nz)

(
(n2x + nz − 1)yim − nxnyxim

)
nz(n2x + n2y)n̂cam

obj · rcamim

.

(3)

In practice, this equation is numerically unstable, as it involves dividing
1 + nz by n2x + n2y, which are both 0 when the image and object planes
are parallel. We instead use its second-order Taylor expansion at nx =
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0, ny = 0, which is valid by our lateral-translation-dominant assumption
(|nx|, |ny| � |nz| ≈ 1).

xobj ≈
Z

fphnz

(
xim +

xim(nxxim + nyyim)

fph
+

f2phnx(nxxim + nyyim) + 2xim(nxxim + nyyim)2

2f2ph

)
, (4)

yobj ≈
Z

fphnz

(
yim +

yim(nxxim + nyyim)

fph
+

f2phnx(nxxim + nyyim) + 2yim(nxxim + nyyim)2

2f2ph

)
. (5)

Note that the zero-order terms correspond to the usual camera-centric
perspective projection expressions.

4. Addition of camera lateral position, R = (X,Y ):

xobj ← xobj +X, yobj ← yobj + Y. (6)

This backprojection procedure onto a common object plane is done for each
camera image.

2 Rectification to an arbitrary perspective

Orthorectification is just a special case of a more general rectification procedure
(Fig. 2d in the main text), where we instead warp to an arbitrary camera-centric
reference frame, specified by its vanishing point, Rref , projection center height,
Zref , and an orientation such that the image and object planes are parallel.
Given the ith camera image, whose extrinsics are similarly specified by Ri, Zi,
and n̂im,i, the vector that warps a point, robj, to the reference frame is given
by

rrectify(robj) =
h

Zi

Zi − Zref

Zref − h
(robj −Ri) +

h

Zref − h
(Ri −Rref ). (7)

If we allow Zref → ∞, the result is consistent with Eqs. 4 and 5 in the main
text, and we recover the orthorectification case, as expected.

3 Effect of ignoring thin lens equation

Conventional large-scale 3D computer vision assumes focusing at infinity so
that fph ≈ feff . If we make this assumption for our close-range, mesoscopic
application, our height estimates become biased. To appreciate the magnitude
of this bias, we combine Eqs. 5 and 6 from the main text to obtain

hbiased
i = −fph∆ri|robj −Ri|−1M−1

i . (8)
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Sample Vert. Horiz.
Cut cards 17.5 -9.6

PCB 20.2 -20.0
Helicopter 19.8 -14.6
Painting 17.0 -15.5

Tuning sample 22.3 -17.9

Table 1: Estimates of the camera principal point position relative to the center
(pixels).

This equation differs from Eq. 8 from the main text by an extra term that is
negligible when objects are far away (Mi→0), but significant at close range. For
our samples, a typical value for Mi was 0.08, which gives a ∼7.4% error. The
closer the range (the larger Mi), the larger this error.

4 COLMAP [1] hyperparameters

We used the OpenCV fisheye camera model, shared among all images in the
same sequences, with the focal length supplied via EXIF and the principal point
(i.e., the projection center position) optimizable, as in our method. Exhaustive
feature matching and guided matching were enabled, and all image-size-related
settings were set so that COLMAP maintained the 1512 × 2016 input size.
Finally, among Delaunay meshing hyperparameters, we set max proj dist=1
and quality regularization=2. The camera model and meshing hyperparameters
were tuned using the same independent sample we used to select the CNN
architecture. For all other hyperparameters, we used the defaults.

5 Camera undistortion estimates

As mentioned in the main text, it is very important to correct for camera dis-
tortions, which are position-dependent relative magnifications. Fig. 1 shows
the radial camera undistortion estimates for each sample under the piecewise
linear model. Since there can be an arbitrary constant global magnification,
in our implementation we arbitrarily normalized distortions to their maximum
values. This procedure does not constrain our results, as an error in global
magnification can be compensated by a global height shift, and vice versa. We
also allowed the camera principal point (i.e., the projection center position) to
vary; the results are shown in Table 1 for all four samples in the main text plus
the hyperparameter tuning sample. Note that the units are in pixels after we
downsampled the original camera images by 2×.

Overall, the results are qualitatively consistent across different samples, with
small deviations due to reconstruction error and/or changing distortion proper-
ties as a function of sensor or lens repositioning for autofocus.
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Figure 1: Top: radial undistortion for each sample. Bottom: sample 2D undis-
tortion profile estimated using the cut cards sample. The 2D undistortion pro-
files estimated from the other samples are similar.
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Downsample block Upsample block
2× bilinear upsample

3× 3 conv, k filters, stride=2 3× 3 conv, k filters, stride=1
Batch normalization Batch normalization

Leaky ReLU Leaky ReLU
3× 3 conv, k filters, stride=1 1× 1 conv, k filters, stride=1

Batch normalization Batch normalization
Leaky ReLU Leaky ReLU

Table 2: Upsample and downsample blocks used in our encoder-decoder archi-
tectures. Convolutions use ‘same’ padding mode.

6 Full comparison of undistortion models

Here, we show the full comparison of height map reconstructions on all four
samples using a 4th, 16th, 32nd and 64th order even polynomials (2, 8, 16, and
32 coefficients, respectively) as well as our piecewise linear radial undistortion
model (with 30 line segments). These results are shown in Figs. 2-5. The
second rows of these figures have saturated color ranges to better appreciate
the distortion-induced artifacts, which typically manifest as rings and affect the
polynomial models, but not the piecewise linear model.

7 CNN architectures

We use slightly modified versions of the encoder-decoder CNNs (no skip connec-
tions) from the original DIP paper [2]. Specifically, we composed CNNs using
the downsample and upsample blocks summarized in Table 2. We designed dif-
ferent symmetric architectures by varying the number of upsample/downsample
pairs and number of filters, k, per block. For example, the architecture speci-
fied by the list, [16, 32, 64], consists of three sequential downsample blocks with
k = 16, 32, and 64 filters, respectively, followed by three sequential upsample
blocks with k = 64, 32, and 16 filters. For all reconstructions in the main text,
we used [16, 16, 16, 32, 32], which we arrived at by comparing reconstruction
quality on an independent sample (see next section).

8 Full comparison of CNN-based and TV regu-
larization

Here, we show height map reconstructions for all four samples in the main text,
as well as the independent hyperparameter-tuning sample, using four different
CNN architectures:

• Architecture 1: [16, 16, 32, 32], 69,424 parameters

• Architecture 2: [16, 16, 16, 16], 28,080 parameters
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• Architecture 3: [16, 16, 16, 32, 32], 76,912 parameters (used in main text)

• Architecture 4: [16, 16, 16, 16, 16], 35,568 parameters

The motivation for these choices was to test two different methods of compres-
sion in the CNN – using fewer parameters and using more downsampling blocks.
Note that in all cases, the number of parameters is significantly fewer than the
number of camera-centric height map pixels (60-70 million, depending on num-
ber of images in the sequence). We chose architecture 3 for all the reconstruction
figures in the main text (unless otherwise specified), because it balances loss of
resolution and reduction of artifacts in the background of the tuning sample.

We also show five different levels of isotropic total variation (TV) regular-
ization,

TV (h(x, y)) =
∑
x,y

√
|∇xh(x, y)|2 + |∇yh(x, y)|2, (9)

where the directional gradients are approximated by finite differences. The total
loss is therefore MSE + λTV, where we used λ = 0.003, 0.01, 0.03, 0.1, and 0.3.

The comparisons are shown in Figs. 6-10. All height reconstructions within
the same figure share the same color range. In general, the compression-based
CNN regularization has more desirable properties as the regularization strength
is tuned, such as flat backgrounds regardless of regularization strength.

9 Effect of number of iterations

Optimizing for 10000 iterations, as we did for all CNN-regularized reconstruc-
tions for consistency, may be conservative in some cases, depending on the sam-
ple. Fig. 11 shows height map reconstruction results for all four main samples
at 500, 1000, 3000, and 10000 iterations. In particular, a few 1000 iterations
may be sufficient for the cut cards and PCB sample, while insufficient for the
helicopter and painting sample. In fact, for the cut cards sample, running for
far fewer iterations may be beneficial to avoid artifacts both in the background
and card surfaces. Indeed, early stopping is a well known strategy to avoid
overfitting in neural networks, and DIP is no exception [2].
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Figure 2: Comparison of height map reconstructions of the cut cards sample
under various undistortion models. The second row uses a saturated color range
to emphasize artifacts. Scale bar, 1 cm.

Figure 3: Comparison of height map reconstructions of the PCB sample under
various undistortion models. The second row uses a saturated color range to
emphasize artifacts. Scale bar, 1 cm.
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Figure 4: Comparison of height map reconstructions of the helicopter seeds
sample under various undistortion models. The second row uses a saturated
color range to emphasize artifacts. Scale bar, 1 cm.

Figure 5: Comparison of height map reconstructions of the painting brush
strokes sample under various undistortion models. The second row uses a sat-
urated color range to emphasize artifacts. Scale bar, 1 cm.
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Figure 6: Regularization comparison for the cut cards sample. Scale bar, 1 cm.

Figure 7: Regularization comparison for the PCB sample. Scale bar, 1 cm.
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Figure 8: Regularization comparison for the helicopter sample. Scale bar, 1 cm.

Figure 9: Regularization comparison for the painting brush strokes sample.
Scale bar, 1 cm.

10



Figure 10: Regularization comparison for the hyperparameter tuning sample
(puzzle pieces and screws). The third CNN architecture was chosen to balance
resolution and reduction of artifacts in the background. Scale bar, 1 cm.
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Figure 11: The four main samples optimized for 500, 1000, 3000, and 10000
iterations. Images within a column use the same color ranges. Scale bar, 1 cm.

12


