Supplementary Material for
Panoptic-PolarNet: Proposal-free LiDAR Point Cloud Panoptic Segmentation

1. Discussion

Choice of the loss: We adopted a combination of cross-
entropy loss and Lovasz softmax loss in the semantic head.
Given the highly imbalanced class distribution in LiDAR
point clouds, the cross-entropy loss will favor those classes
that are the majority of points, like the road class and the
building class. Conversely, Lovasz softmax loss optimizes
directly on the mloU Jaccard index, which treats all classes
equally. Combining these two losses will force the network
to optimize toward an overall accurate prediction while fo-
cusing more on hard classes. In the instance head, we chose
the MSE loss instead of focal loss [1] for the heatmap re-
gression. The reason is that we do not necessarily need a
very accurate prediction of the center in the BEV due to the
scarcity of instance overlaps. However, we need a mono-
tonically decreasing heatmap from the center to the edge to
have a proper keypoint selection in the NMS. Also, the ex-
periments showed that focal loss decreases the PQ by 1.3%.

Data augmentation: We apply instance oversampling to
compensate for two imbalances in the LiDAR point cloud:
(1) The imbalance between “thing” and “stuff”. Points be-
long to “thing” classes usually consist of only a small por-
tion of the point cloud. (2) The imbalance between dif-
ferent “thing” classes. For example, the most occurring
class, car, has around 107 time more points than the least
occurring class, motorcyclist in the SemanticKITTI dataset.
Experiments show that even though this oversampling will
decrease the segmentation accuracy in “stuff”, the over-
whelmingly increases in “thing” can still provide a huge im-
provement to the PQ and mIoU. Our experiments also show
that either simply putting instance points at any place in a
point cloud or transform it through its center will decrease
the PQ. We conclude that such simple augmentation ignores
projection properties, introduces inconsistency into the Li-
DAR point cloud, and thus entangles BEV feature learning.

Proposal-free vs. proposal-based: Even though
proposal-based panoptic segmentation methods dominate in
the 2D domain, there are only a few existing approaches
for LiDAR point clouds. We think there are two reasons.
First, proposal-based methods rely heavily on the annota-
tion of bounding boxes, whereas point cloud datasets do not
necessarily provide such annotations. Second, most current

Figure 1: We highlight SAP-pruned points in color. Left:
SAP prunes tangled vegetation and fence; Right: SAP
prunes garden curbs that are annotated as the “ fence ”

proposal-based object detection methods, like what we as-
sume in our instance head, are not designed to represent
the scene along the Z-axis. Lacking proper representation
makes it more challenging to achieve a competitive result
while maintaining speed when modified into a panoptic seg-
mentation network.

End-to-end training: We only train the network to
get an intermediate result and use a majority voting fu-
sion to generate the final panoptic segmentation. Making
the proposal-free panoptic segmentation network end-to-
end trainable is still an open problem to explore in the fu-
ture.

Self-adversarial Pruning Visualization: SAP is de-
signed to remove ambiguous, noisy or/ and informative
points. Since SemanticKITTI is a well-annotated dataset,
we visually find SAP tends to remove challenging or am-
biguous cases. Some examples are shown in Fig. 1.

2. Class-wise Results

We show the class-wise results of Panoptic-PolarNet on
SemanticKITTI and nuScenes in Table | and Table 2. Our
method has a similar panoptic segmentation performance in
the corresponding classes among these two datasets. The
low performance comes from the class that either has a
small physical shape (like bicycle) or has a small number
of instances in the dataset (like truck and construction vehi-
cle). Despite being a more challenging dataset due to its sig-
nificantly higher number of instances, nuScenes has fewer
classes than SemanticKITTI, which makes it more distin-



Table 1: Class-wise results on test split of SemanticKITTL.
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PQ 88.8% 33.0% 518% 352% 37.6% 513% 69.9% 524% 88.6% 42.6% 612% 1.6% 857% 460% 757% 545% 415% 48.5% 56.4% | 54.1%
RQ 96.2% 46.7% 599% 38.7% 41.5% 657% 78.6% 57.7% 96.8% 562% 163% 28% 921% 623% 92.5% 713.6% 55.5% 66.0% 752% | 65.0%
SQ 923% 70.7% 86.4% 90.9% 90.5% 812% 88.9% 909% 91.5% 75.9% 803% 55.6% 93.0% 738% 81.9% T41% T49% 73.4% 75.0% | 81.4%
IoU 94.4% 38.7% 482% 462% 34.5% 51.1% 63.9% 249% 90.8% 61.3% 74.6% 16.5% 89.9% 61.1% 83.4% 66.7% 68.0% 56.8% 58.5% | 59.5%

Table 2: Class-wise results on validation split of nuScenes.
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PQ 41.5% 58.0% 70.4% 89.0% 36.4% 184% 851% 80.7% 49.7% 633% 957% 53.9% 67.1% 49.8% 843% 80.0% | 67.7%
RQ 54.4% 68.6% 76.1% 959% 449% 86.0% 952% 91.8% 582% 69.4% 100.0% 663% 853% 65.1% 982% 94.7% | 78.1%
SQ 763% 84.6% 92.5% 92.8% 812% 912% 89.4% 819% 853% 913% 957% 813% 794% 16.5% 86.0% 84.5% | 86.0%
IoU 523% 28.1% 88.0% 903% 324% T1.7% 722% 52.8% 583% 16.6% 959% 68.8% 743% 134% 873% 855% | 69.3%

guishable and thus having higher PQ and mloU.

3. Qualitative Results

We show the visualization examples of Panoptic-
PolarNet on SemanticKITTI and nuScenes in Figure 2 and
Figure 3 respectively. Our method can make accurate in-
stance predictions regardless of the distance and point den-
sity variation. We can also visually verify that nuScenes
has significantly more instances than SemanticKITTI. And
most of those instances belong to some challenging classes
that have a small number of points. There are also du-
plicated instance predictions within a short distance. This
could be fixed by introducing class-wise prior knowledge
in the grouping stage in the future.
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(a) Semantic Ground Truth
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(d) Instance Prediction

Figure 2: Visualization of Panoptic-PolarNet on the SemanticKITTI dataset. The red dots in the instance prediction represent

the center for each instance.
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(b) Semantic Prediction (c) Instance Ground Truth (d) Instance Prediction

(a) Semantic Ground Truth
Figure 3: Visualization of Panoptic-PolarNet on the nuScenes dataset. The red dots in the instance prediction represent the

center for each instance.



