
Patch2Pix: Epipolar-Guided Pixel-Level Correspondences
Supplementary Material

Qunjie Zhou1 Torsten Sattler2 Laura Leal-Taixé1
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In this supplementary material, we provide additional in-
formation to further understand our proposed refinement
network Patch2Pix. In Sec. 1, we provide the architecture
details of our backbone, regressors and our baseline, i.e.,
the adapted NCNet, followed by the details of our training
data and other implementation details. We presents ablation
studies on our architecture and training hyper-parameters in
Sec. 2. We further detail the experimental setups for the
homography estimation and outdoor/indoor localization in
Sec. 3. Finally, Sec. 4 shows qualitative results of matches
estimated by Patch2Pix on various benchmarks. We will
release our code upon the paper’s acceptance.

1. Implementation Details.

Backbone. We use a truncated ResNet34 as our backbone
to extract features from the input images. It predicts 5 fea-
ture maps, from input feature f0 to the last feature map f4.
The corresponding feature channel dimensions are [3, 64,
64, 128, 256]. To have enough resolution in the last feature
map f4, we change the stride of the convolutional layer to
prevent further downscaling, which means the spatial reso-
lution of f4 is the same as f3, i.e., 1/8 of the original image
resolution. The ResNet34 backbone is pretrained on Ima-
geNet [5] and frozen during training.

Regressor. Our mid-level and fine-level regressors have
the same architecture, as shown in Fig. 1. On the left side
of the figure, the collected features from the backbone of a
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Figure 1. Regressor Architecture.

patch pair are fed into a set of layers to aggregate the feature
tensors into a single vector. On the right side, the aggregated
feature vector is fed into a set of fully connected layers (FC)
to output the confidence score c and the coordinates of the
detected local match δi.

Our Adapted NCNet [15]. To detect match proposals,
we use the pretrained NC matching layer from NCNet [15]
to match our extracted features. Given a pair of images,
features are first extracted from the image and the two last
feature maps, i.e. fA4 , f

B
4 , which are 8-times downscaled

w.r.t. image resolution, are exhaustively matched to produce
a correlation map. The size of the correlation map is further
reduced using a MaxPool4D operation with window size
k = 2 for computational efficiency following the original
NCNet [15]. The final matching score map is obtained by
applying a 4D convolution over the reduced correlation map
to enforce neighbourhood consensus. The raw matches are
the indices of row-wise and column-wise maximum values
of the matching score map. To go back to the matching res-
olution, the raw matches are shifted to the corresponding
pooling location using the index information from the Max-
Pool4D operation. This results in downscaled matches, with
each match corresponding to a pair of local 8× 8 patches in
the original image. Multiplying a match by 8 gives the two
upper-left corners of the two local patches.

We keep only the mutually matched patches and use all
of them during training. During inference, we further fil-
ter the mutually matched ones with a match score threshold
c = 0.9 for outlier rejection. We found it produces the best
performance across tasks in our experiments.

Training Data Processing. Our refinement network is
trained on the large-scale outdoor dataset MegaDepth [10],
where images from 196 scenes are obtained from the
Internet and then reconstructed using Structure-from-
Motion [20]. We first follow the preprocessing steps
from [7] to regenerate camera pose labels. We keep images
with aspect ratio (width/height) between [1.3, 1.7] from
which we randomly select at most 500 pairs per scene which
have more than 35% visual overlap. Finally, we obtain in
total 60661 pairs across 160 scenes. During training, we
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ID Exp. Feat. θ̂cls / θ̂geo θ̃cls/θ̃geo
Overall Illumination Viewpoint

Accuracy (%, ε < 1/3/5 px)

I No

01

50/50 5/5

0.37 / 0.75 / 0.82 0.54 / 0.91 / 0.95 0.20 / 0.60 / 0.70
012 0.34 / 0.69 / 0.8 0.62 / 0.92 / 0.97 0.08 / 0.47 / 0.64
123 0.37 / 0.69 / 0.81 0.68 / 0.93 / 0.98 0.09 / 0.48 / 0.66

01234 0.42 / 0.76 / 0.83 0.62 / 0.92 / 0.97 0.24 / 0.60 / 0.70
0123 0.45 / 0.77 / 0.85 0.65 /0.93 / 0.98 0.27 / 0.62 / 0.73

II No 0123

400/400 5/5 0.43 / 0.76 / 0.84 0.56 / 0.93 / 0.97 0.27 / 0.62 / 0.73
100/100 5/5 0.45 / 0.76 / 0.84 0.67 / 0.93 / 0.98 0.25 / 0.60 / 0.72
50/50 15/15 0.44 / 0.77 / 0.85 0.68 / 0.93 / 0.97 0.21 / 0.62 / 0.74
50/50 5/5 0.45 / 0.77 / 0.85 0.65 / 0.93 / 0.98 0.27 / 0.62 / 0.73
50/50 1/1 0.43 / 0.76 / 0.84 0.62 / 0.91 / 0.97 0.26 / 0.61 / 0.71
25/25 5/5 0.41 / 0.77 / 0.85 0.61 / 0.94 / 0.98 0.23 /0.62 / 0.73

III Yes 0123

50/50 15/1 0.42 / 0.78 / 0.85 0.59 / 0.95 / 0.98 0.27 / 0.61 / 0.73
50/50 5/5 0.47 / 0.78 / 0.85 0.65 / 0.93 / 0.97 0.30 / 0.64 / 0.73
50/50 5/1 0.45 / 0.76 / 0.85 0.64 / 0.93 / 0.98 0.28 / 0.59 / 0.72
50/50 1/1 0.44 / 0.76 / 0.84 0.63 / 0.94 / 0.98 0.26 / 0.60 / 0.71

Table 1. Patch2Pix Training Ablation. All trained variants are evaluated on HPatches [1] for homography estimation. We compare the
models within each group and mark the best results in different colors.

crop the image from the right and bottom sides so that its
aspect ratio is 1.5 and then resize every image to resolution
480× 320.

Training Details. For each training image pair, we ran-
domly select 400 matches from the NCNet match proposals
and then apply our expansion mechanism, which gives us
3200 matches to be processed by the two regressors. The re-
gressors are optimized using Adam [9] with an initial learn-
ing rate of 5e−4 for 5 epochs and then 1e−4 until it con-
verges. Our method is implemented in Pytorch [12] v1.4.
Each of our training is performed on a RTX 8000 48GB
GPU.

2. Training Ablation Study.

We show Patch2Pix variants trained under different
training settings including: with or without patch expansion
(Exp.), different feature collection for patch pairs (Feat.),
the two thresholds θ̂cls, θ̂geo used to calculate the losses of
the mid-level regressor, and the two θ̃cls, θ̃geo for the fine-
level regressor (c.f . Sec.3.1 & 3.2 in our main paper). We
compare all variants when they are trained with a learning
rate of 5e−4 for 5 epochs, since training longer does not
change the comparison in our case. Those variants are eval-
uated using HPatches [1] for homography estimation at a
confidence threshold 0.5 for ablation. We report the per-
centage of correctly estimated homographies whose aver-
age corner error distance is below 1/3/5 pixels. We give an
ID to different groups of experiments for convenience and
present the results in Tab. 1.

Training Hyper-parameters. As shown in Tab. 1, in the
experiments of group I, we keep other settings identical and
only modify the feature collection. We show that taking

features from all layers before the last layer f4 leads to the
best results. We then fix the feature collection and vary the
thresholds which are used to identify the labels for classi-
fication and the subset of matches to be optimized for re-
gression. Comparing models within group II, we find that
models using a threshold of 400 and 50 for the mid-level
regressor perform best for viewpoint changes, while the
model trained with threhsold 50 is better under illumina-
tion changes and thus overall more promising. In group
III, we again fix the feature collection and apply patch ex-
pansion mechanism to our trainings and further search for
the suitable thresholds. We find that the model trained with
θ̂cls = θ̂geo = 50 and θ̃cls = θ̃geo = 5 overall outperform
others, especially under viewpoint changes, which gives the
best threshold setting.

Effect of Local Patch Expansion. Comparing the best
models from groups II and III, we show that with the same
training epochs, our best model learns faster when using
patch expansion. We further noticed that with the same
thresholds, the model trained without patch expansion con-
verges faster at a similar accuracy, while the model with
patch expansion converged slower at a better accuracy.

3. Experiment Details.

Homography Estimation Details To compute the corner
correctness metric used in [6,17,22], the four corners of one
image are transformed into the other image using the esti-
mated homography to compute the distance to the four GT
corners. We report the percentage of correctly estimated
homographies whose average corner error distance is be-
low 1/3/5 pixels. To estimate the homography from the pre-
dicted matches, we use the findHomography function pro-
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vided in pydegensac [3,4,11]1, which shows marginally bet-
ter accuracy compared to the OpenCV [2] implementation.
We fix the RANSAC threshold as 2 pixels since it in gen-
eral works better than other thresholds for all methods. We
run all methods on a GTX TITAN X 12GB GPU under our
environment using their public implementations.

Quantization Details. As we mentioned in the main pa-
per, we apply quantization to our matches to evaluate on
Aachen Day-Night Benchmark (v1.0) [18, 19]. The intro-
duced localization pipelines, e.g. HLOC [16], first recon-
struct a 3D model using the local features and matches and
then register the queries to the built 3D model. Therefore,
such pipelines require methods to produce keypoints that
are co-occurring in several retrieval pairs to work properly
in the triangulation step for reconstruction. However, our
method directly regresses matches from a pair of images.
As such, the pixel positions found in image A for a pair (A,
B) might differ slightly to those found for a pair (A, C). In
contrast, all methods that perform separate feature extrac-
tion per image will automatically have the same detections
in image A for both pairs. Thus, they can easily be used
for triangulation. To make our matches work in this setting,
we quantize our matches by representing keypoints that are
closer than 4 pixels to each other with their mean location,
meaning we sacrifice pixel-level accuracy here. After quan-
tization, we remove the duplicated matches by keeping only
the one with the highest confidence score. While it is not a
perfect solution, we leave it as our future work to either add
a loss that enforces detecting the same positions in A for
pairs (A, B) and (A, C) or to design a localization pipeline
tailored to our matches.

InLoc Evaluation Details. We follow SuperPoint [6]+Su-
perGlue [17] to evaluate on the same top-40 retrieval pairs,
where they perform a temporal consistency check to restrict
the retrieval, and adopt their RANSAC threshold of 48 pix-
els for pose estimation. For all methods, we test their per-
formance two different image sizes, i.e., we resize every
image to have a larger side of either 1024 or 1600 pixels.
Only for SparseNCNet [14] we also consider its default im-
age size, i.e., 3200 pixels. By default, the local feature de-
tection and description methods use the nearest neighbor
mutual matcher to detect matches. We further test those
methods when using a threshold of 0.75 on their matching
scores, computed by their normalized descriptors, for out-
lier rejection. We present the complete results of the meth-
ods under different settings in Tab. 2. For clarity, we mark
their best entries blue which have been presented in Tab. 2
of our main paper.

With the results of the complete table, we show that
SuperPoint [6], SuperPoint + CAPS [22] and SIFT +
CAPS [22] benefit from using a threshold of 0.75 for the

1https://github.com/ducha-aiki/pydegensac

Method Imsize Supervision Localized Queries (%, 0.25m/0.5m/1.0m, 10◦)
DUC1 DUC2

SuperPoint [6] + NN 0.75 1024 Full 40.4 / 58.1 / 69.7 42.0 / 58.8 / 69.5
SuperPoint + NN 0.0 1024 Full 29.8 / 48.5 / 61.6 32.1 / 46.6 / 56.5
SuperPoint + NN 0.75 1600 Full 43.9 / 67.7 / 76.3 39.7 / 58.0 / 71.0
D2Net [7] + NN 0.0 1024 Full 38.4 / 56.1 / 71.2 37.4 / 55.0 / 64.9
D2Net + NN 0.75 1024 Full 31.8 / 49.0 / 55.1 20.6 / 34.4 / 44.3
D2Net + NN 0.0 1600 Full 34.8 / 54.5 / 68.7 34.4 / 50.4 / 62.6
R2D2 [13] + NN 0.0 1600 Full 36.4 / 57.6 / 74.2 45.0 / 60.3 / 67.9
R2D2 + NN 0.75 1600 Full 35.4 / 60.6 / 75.8 42.7 / 57.3 / 65.6
SuperPoint + SuperGlue [17] 1600 Full 49.0 / 68.7 / 80.8 53.4 / 77.1 / 82.4
SuperPoint + CAPS [22] + NN 0.75 1024 Mix 40.9 / 60.6 / 72.7 43.5 / 58.8 / 68.7
SuperPoint + CAPS + NN 0.0 1024 Mix 39.4 / 61.6 / 72.7 35.1 / 50.4 / 64.1
SuperPoint + CAPS + NN 0.75 1600 Mix 43.9 / 67.7 / 76.3 39.7 / 58.0 / 71.0

SIFT + CAPS [22] + NN 0.75 1600 Weak 38.4 / 56.6 / 70.7 35.1 / 48.9 / 58.8
SIFT + CAPS + NN 0.0 1600 Weak 37.9 / 56.1 / 66.7 30.5 / 43.5 / 53.4
SIFT + CAPS + NN 0.75 1024 Weak 38.4 / 53.5 / 69.7 33.6 / 45.0 / 55.0
SparseNCNet [14] (top2k) 1600 Weak 41.9 / 62.1 / 72.7 35.1 / 48.1 / 55.0
SparseNCNet (top2k) 1024 Weak 37.9 / 54.0 / 70.2 32.8 / 45.8 / 53.4
SparseNCNet (top2k) 3200 Weak 35.4 / 50.5 / 62.1 24.4 / 31.3 / 35.9
Patch2Pix (c=0.25) 1024 Weak 44.4 / 66.7 / 78.3 49.6 / 64.9 / 72.5
Patch2Pix (c=0.25) 1600 Weak 44.9 / 67.2 / 75.8 43.5 / 59.5 / 69.5

Patch2Pix (w.SuperPoint+CAPS) 1024 Mix 42.4 / 62.6 / 76.3 43.5 / 61.1 / 71.0
Patch2Pix (w.SuperGlue) 1600 Mix 50.0 / 68.2 / 81.8 57.3 / 77.9 / 80.2

Table 2. Complete InLoc [21] Benchmark Results. We report
the percentage of correctly localized queries under specific error
thresholds. Methods are evaluated inside HLOC [16] pipeline to
share the same retrieval pairs, RANSAC threshold. We mark the
best results in bold. For each method, we mark its best entry
among all settings in blue which corresponds to its result presented
in Tab. 2 of our main paper.

outlier filtering while D2Net [7] and R2D2 [13] perform
better without such thresholding. In addition, we observe
that SuperPoint, D2Net , SuperPoint + CAPS and Patch2Pix
benefit from using a smaller image size of 1024, while
SparseNCNet performs best at size of 1600 pixels.

4. Qualitative Results.
In Fig. 2, we plot the matches estimated by Patch2Pix

on the image pairs obtained from the internet, HPatches [1]
and PhotoTourism [8]. We use the default setting of our
model, i.e., NCNet proposals and confidence score 0.25, to
predict matches from the image pairs. We identify the in-
lier matches using the findHomography or findFundamen-
talMatrix function provided in pydegensac [3, 4, 11]. For
the HPatches image pairs, we use findHomography with a
ransac threshold of 2. For other image pairs, we use find-
FundamentalMatrix with a RANSAC threshold of 1. Fi-
nally, we plot at most 300 matches for each pair for clear
visualization.

Furthermore, we visualize the matches on Aachen Day-
Night (v1.0) [18, 19] in Fig. 3 and on InLoc [21] in Fig. 4
and Fig. 5. We show the matches refined by Patch2Pix
when we use our NCNet baseline, and when we use Super-
Point [6] + SuperGlue [17] for the match proposals. For a
randomly selected query, we pick the database images with
the most inlier matches identified by the camera pose solver
during localization. We plot the inliers in green and other
matches in red and count the inlier numbers.
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Figure 2. Example matches of Patch2Pix on the image pairs obtained from the internet, HPatches [1] and PhotoTourism [8]. Patch2Pix can
robustly handle strong illumination changes, large viewpoint variations, and repetitive structures.
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Figure 3. Example matches of Patch2Pix using NCNet proposals (left) and SuperPoint [6] + SuperGlue [17] (right) proposals on night
queries of Aachen Day-Night(v1.0) [18, 19].
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Figure 4. Example matches of Patch2Pix using NCNet proposals (left) and SuperPoint [6] + SuperGlue [17] (right) proposals on InLoc [21]
DUC1.
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Figure 5. Example matches of Patch2Pix using NCNet proposals (left) and SuperPoint [6] + SuperGlue [17] (right) proposals on InLoc [21]
DUC2.

7



References
[1] Vassileios Balntas, Karel Lenc, Andrea Vedaldi, and Krys-

tian Mikolajczyk. Hpatches: A benchmark and evaluation of
handcrafted and learned local descriptors. In CVPR, pages
5173–5182, 2017. 2, 3, 4

[2] G. Bradski. The OpenCV Library. Dr. Dobb’s Journal of
Software Tools, 2000. 3
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