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1. Ablation Study
1.1. Color-Spatial Transformer

Figure 1: Ablation study on the resolution setting in the
Color-Spatial Transformer. First row, direct composition of
target image IMt and one of the single-homography trans-
formed source images Iis. Second row, the learned pixel-
wise warping field Ai

s visualized using color wheel in [1].
Third row, the color-spatial transformed image Îis. Last row,
the final merging result Io.

Recall that while introducing the Color-Spatial Trans-
former, we intend to preserve the texture details and the
rigidity of the source image contents. Therefore, given
Ai

c = [Ki
c bic] ∈ IRW×H×3×4, and Āi

s = Bs(u
i
s) ∈

IRs×s×2, we fix s = 8 and d = 8 in our experiments.
We find d does not influence the performance a lot, and the
guidance map is automatically learned to uniformly span
the necessary bins like in the HDRNet[2]. Figure 1 shows
the comparison when we set different s values. It sug-
gests that increasing s gives more degrees of freedom to
the learned warping field Ai

s. However, while encountering
larger holes like in Figure 1, better flexibility does not bet-
ter align the contents as expected, but distorts the contents
inside the hole. The transformed color field also becomes
less smooth as s increases. In an extreme case, suppose

we replace the deep bilateral grid and directly learn a full-
resolution pixel-wise color-warping field with total variance
constraints as in the last column, the model struggles to
infer a reasonable color-warping operation within a large
hole.

We conclude that CST with smaller s value like s = 8
generalizes better to inference images with varying spatial
resolutions. It is mainly due to the ill-posedness of image
completion. Unlike conventional image registration tasks
where all the pixels of the matched regions are available,
hole regions are missing in the inpainting task. Less free-
dom in the hole area preserves better content integrity and
semantics.

1.2. Network Components

Figure 2: Final fusion masks c̄i learned by the model with
or without the Single-Proposal Fusion (SPF) module. By
using SPF outputs as guidance to learn the MPF, the final
weights learned tend to be more sparse.

Importance of Single-Proposal Fusion (SPF) Our ex-
periments exhibit that the proposed Single-Proposal Fusion
(SPF) module before the Multi-Proposal Fusion (MPF) is
necessary for effectively learning the final merging weights
of all the proposals. We find directly learning the weights
to fuse all the proposals is very challenging. The learned
weights have a hard time becoming sparse even though the
same total variance loss is imposed. A comparison of the
merging mask c̄i between the model with and without SPF
is shown in Figure 2. Using SPF outputs ci as a struc-
ture guidance for learning the fusion of multiple proposals
works better in practice.

Correlation between ci and c̄i In our experiments, the
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Figure 3: One example of user-involved interactive editing.
For the given target and source images on the left, we gen-
erate seven proposals including one Ig from ProFill. For the
upper group of images, we visualize the regions selected by
our model to synthesize the final results. The image with
red bounding box yields an unexpected artifacts of stairs.
By zeroing out its corresponding c2, we can correspond-
ingly obtain zero-valued c̄2 as shown in the lower image
group. Other maps are also correspondingly redistributed.
The final result on the lower-right position is then gener-
ated by merging the other selected proposals with nonzero
weighted masks. As we can see, the artifact disappears.

learned single-proposal fusion mask ci and multi-proposal
fusion mask c̄i demonstrate strong correlation. Specifically,
by zeroing out one of the ci, the values in c̄i will also van-
ish. This shows the MPF constructs the correspondence to
make c̄i be conditioned on ci. This provides more flexibil-
ity for our model to incorporate user interactions. Suppose
users want to eliminate the elements in some proposals, one
can simply zero them out and the final results will only be
merged from other selected proposals. Such a process is
demonstrated in Figure 3.

1.3. APAP with Poisson Blending

We experimented with using Poisson blending [4] com-
bined with APAP. The testing result on the Small Set of im-
ages with only few non-existing regions is increased from
31.94dB / 0.9738 to 32.56dB / 0.9754 in terms of PSNR /
SSIM. However, we did not incorporate Poisson blending
in the baseline because we found in some cases there could
be significant color bleeding artifacts due to strong color
mismatches and non-existing regions especially along the
boundary of the hole. Some visual comparisons are shown
in Figure 4.

1.4. Using ProFill with Partial Masks

As we stated that single image techniques don’t work
well for larger holes, while in our work, the single-image
inpainting is computed over the full mask area. We also

Target Source APAP APAP+Poisson TransFill

Figure 4: Ablation study on APAP with Poisson blending
post-processing. The color bleeding artifacts are significant
in some cases when there are strong color mismatches or
non-existing regions. APAP does not include image inpaint-
ing, so regions that are outside the source image appear as
black.

Target Source TransFill TransFill + Post Binary Mask

Figure 5: Post-hoc refilling results using ProFill. The Trans-
Fill columns show a zoom of the original output, the post-
hoc filling result (TransFill + Post), and the region to be re-
filled from the confidence cg (Binary Mask). The re-filling
with a partial mask may introduce additional artifacts like
broken door frames.

thought about using ProFill or other single-image inpaint-
ing method with partial mask, but could not find a princi-
pled and an end-to-end way to do this. However, we an-
alyzed an approximation of this approach where we used
the confidence map cg estimated by our method, and bi-
narized it to do a post-hoc fill (with ProFill) of each hole
region of the target that corresponds to single image in-
painting (where the content is not visible in the source im-
age or not well reused). Comparisons are shown in Figure
5. This reveals that since the mask was learned for merg-
ing purposes, a post-hoc filling using the mask may intro-
duce other artifacts like broken door frames. The average
testing results on RealEstate10K decreased from 37.58dB /
0.9879 / 0.0164 to 37.13dB / 0.9871 / 0.0173 in terms of
PSNR / SSIM / LPIPS. However, using partial masks to fill
only non-existing regions might work better for images with
larger non-existing regions, and become more robust if an-
other approach of learning is taken.



2. User Study Details

Figure 6: User study interface and check questions. We set
up 10 trivial questions to let the users choose which one is
more completed.

The GUI of our user study at AMT is shown in Fig-
ure 6. To guarantee the reliability of the users’ feedback,
we require the users to take a qualification test before they
evaluate. The test presents users with the 10 trivial pairs It
and IMt and users who answer correctly more than 8 ques-
tions are approved to take the official test. We also mix 10
random sanity check questions with the real questions. No
users had to be disqualified due to failing the initial test, and
only very few users (4 users) got check questions later in the
study wrong (5.7% of total opinions), so we conclude that
the user responses are reliable.

3. Failure Cases

Figure 7: Failure cases. These demonstrate limitations with
large changes in viewing angle, outpainting artifacts from
the off-the-shelf single image inpainting module ProFill,
and challenges in handling dramatically different lighting
environments.

Figure 7 shows some examples of failure cases when the
viewing angle changes are large. The color matching mod-
ule may struggle if there are extreme lighting differences.

We may also encounter outpainting artifact issues caused
by ProFill.

4. More Visual Results Comparison
Visual Results on RealEstate10K We present more vi-

sual results in Figure 8 on the RealEstate10K dataset. Com-
pared with the baselines, our proposed TransFill achieves
better spatial alignment and content faithfulness.

Visual Results on Synthetic Adobe-5K In Figure 9,
we show more results on the synthetic Adobe-5K dataset
to evaluate the performance of our color transformation.
As stated in the paper, we synthesize misaligned and color
inconsistent images from Adobe-5K dataset. The spatial
transformation is a simple homography-based warping, so
the CST module works well to align the images and match
the color. More challenging cases can be visualized in user-
provided images.

More Results on User-provided Images Additional
higher-resolution results can be found at the following link:
Additional Results.

5. Unfolding the Model: Intermediate Results
In Figure 10 and 11, we unfold the whole pipeline of

TransFill to visualize the intermediate results of each pro-
posed module. We demonstrate the process of image com-
pletion in a more intuitive way. After proposing differ-
ent homography-warped images, the CST effectively ad-
justs the misalignment and color mismatching. Then the
proposed TransFill fills in the holes by selectively merging
the well-aligned and color-consistent regions from different
proposals. Imperfect regions are finally filled with the out-
put from ProFill.

https://transfill.github.io/TransFill_results/


Target Source APAP DFG OPN ProFill TransFill

Figure 8: Visual results comparison on the RealEstate10K dataset with FD=10. These have been cropped. Please zoom in
so that there are about 3-4 images across the width of the screen to reveal the significant differences in fine details.
Compared with the baselines, our proposed TransFill achieves better spatial alignment and faithfulness to the source image
content.



Figure 9: Visual results on the synthetic Adobe-5K dataset. For each group of photos, the left one is the composition of IMt
and Is. We transform the color and warp Is to make it consistent with IMt and composite them as the right image. Our CST
module resolves the color mismatches and spatial misalignment problems.



Figure 10: Unfolding the whole pipeline to visualize the intermediate results of each module.



Figure 11: Unfolding the whole pipeline to visualize the intermediate results of each module. For some challenging cases
when the line alignment is hard, our model can also leverage the outstanding performance of line generation of ProFill to
synthesize the door frame.



6. Network Structures
The network structures are summarized in Table 1, 2

and 3. The structures follow a UNet structure with mi-
nor modifications such as some shared structures and some
parameter-free components like the tri-linear interpolation
layer in the CST. SPF is implemented by a shallower UNet
than MPF.

Input Output # Out Type

IMt , Iis,M EncConv1 1 32 Conv 3× 3
EncConv1 1 EncConv1 2 32 Conv 3× 3
EncConv1 2 Pool1 32 Maxpool 2× 2
Pool1 EncConv2 1 64 Conv 3× 3
EncConv2 1 EncConv2 2 64 Conv 3× 3
EncConv2 2 Pool2 64 Maxpool 2× 2
Pool2 EncConv3 1 128 Conv 3× 3
EncConv3 1 EncConv3 2 128 Conv 3× 3
EncConv3 2 Pool3 128 Maxpool 2× 2
Pool3 EncConv4 1 256 Conv 3× 3
EncConv4 1 EncConv4 2 256 Conv 3× 3
EncConv4 2 Pool4 256 Maxpool 2× 2
Pool4 EncConv5 1 512 Conv 3× 3
EncConv5 1 EncConv5 2 512 Conv 3× 3
EncConv5 2 Pool5 512 Maxpool 2× 2
EncConv5 2 EncConv6 1 512 Conv 3× 3
EncConv6 1 EncConv6 2 512 Conv 3× 3
EncConv6 2 ColorCoeff 1 96 Conv 3× 3
ColorCoeff 1 ColorCoeff 2 96 Conv 3× 3
EncConv6 2 WarpCoeff 1 2 Conv 3× 3
WarpCoeff 1 WarpCoeff 2 +Tanh 2 Conv 3× 3
Iis GuideConv1 1 16 Conv 1× 1
GuideConv1 1 GuideConv1 2 +Tanh 1 Conv 1× 1

Table 1: Network structure of CST. Prior to each convolu-
tion except EncConv1 1, a PReLU [3] is applied as a pre-
activation.
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Name # Out Type

IMt ,M, Iis EncConv1 1 32 Conv 3× 3
EncConv1 1 EncConv1 2 32 Conv 3× 3
EncConv1 2 Pool1 32 Maxpool 2× 2
Pool1 EncConv2 1 64 Conv 3× 3
EncConv2 1 EncConv2 2 64 Conv 3× 3
EncConv2 2 Pool2 64 Maxpool 2× 2
Pool2 EncConv3 1 128 Conv 3× 3
EncConv3 1 EncConv3 2 128 Conv 3× 3
EncConv3 2 Deconv2 64 Deconv 3× 3
Deconv2 Concatenate2 64 Deconv2 , EncConv2 2
Concatenate2 DecConv2 1 64 Conv 3× 3
DecConv2 1 DecConv2 2 64 Conv 3× 3
DecConv2 2 Deconv1 32 Deconv 3× 3
Deconv1 Concatenate1 32 Deconv1 , EncConv1 2
Concatenate1 DecConv1 1 32 Conv 3× 3
DecConv1 1 DecConv1 2 32 Conv 3× 3
DecConv1 2 DecConv1 3 + Sigmoid 1 Conv 3× 3
DecConv1 3 Concatenate feature 4 DecConv1 3, IMt
Concatenate feature FeatureConv1 1 3 Conv 3× 3
FeatureConv1 1 FeatureConv1 2 3 Conv 3× 3

Table 2: Network structure of SPF.

Input Output # Out Type

IMt ,M, f i
s, fg EncConv1 1 32 Conv 3× 3

EncConv1 1 EncConv1 2 32 Conv 3× 3
EncConv1 2 Pool1 32 Maxpool 2× 2
Pool1 EncConv2 1 64 Conv 3× 3
EncConv2 1 EncConv2 2 64 Conv 3× 3
EncConv2 2 Pool2 64 Maxpool 2× 2
Pool2 EncConv3 1 128 Conv 3× 3
EncConv3 1 EncConv3 2 128 Conv 3× 3
EncConv3 2 Pool3 128 Maxpool 2× 2
Pool3 EncConv4 1 256 Conv 3× 3
EncConv4 1 EncConv4 2 256 Conv 3× 3
EncConv4 2 Pool4 256 Maxpool 2× 2
Pool4 EncConv5 1 512 Conv 3× 3
EncConv5 1 EncConv5 2 512 Conv 3× 3
EncConv5 2 Deconv4 256 Deconv 3× 3
Deconv4 Concatenate4 256 Deconv4 , EncConv4 2
Concatenate4 DecConv4 1 256 Conv 3× 3
DecConv4 1 DecConv4 2 256 Conv 3× 3
DecConv4 2 Deconv3 128 Deconv 3× 3
Deconv3 Concatenate3 128 Deconv3 , EncConv3 2
Concatenate3 DecConv3 1 128 Conv 3× 3
DecConv3 1 DecConv3 2 128 Conv 3× 3
DecConv3 2 Deconv2 64 Deconv 3× 3
Deconv2 Concatenate2 64 Deconv2 , EncConv2 2
Concatenate2 DecConv2 1 64 Conv 3× 3
DecConv2 1 DecConv2 2 64 Conv 3× 3
DecConv2 2 Deconv1 32 Deconv 3× 3
Deconv1 Concatenate1 32 Deconv1 , EncConv1 2
Concatenate1 DecConv1 1 32 Conv 3× 3
DecConv1 1 DecConv1 2 32 Conv 3× 3
DecConv1 2 DecConv1 3+Softmax N + 2 Conv 3× 3

Table 3: Network structure of MPF.


